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Abstract

Using price incentives to allocate scarce resources is a core tenet of economics but may re-
sult in unpalatable distributional outcomes. This paper analyzes the efficacy of prices as a
means of inducing water conservation during severe drought. We study the introduction of
surcharges enacted within existing nonlinear rate structures. We embed machine learning
counterfactual prediction methods within a demand framework to isolate exogenous price
variation, finding that households exhibit significant demand response despite the temporary
nature of surcharges. However, surcharges alone cannot explain a majority of the conservation
observed despite steep price increases. Customer-specific pricing undercuts scarcity signals
by shielding large users from binding price increases, and surcharges do little to reduce the
regressivity of water rates. Simpler rate structures can achieve greater efficiency and equity,
especially if enhanced by progressive lump-sum transfers.
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1 Introduction

Severe droughts linked to climate change threaten water supplies globally. Water scarcity is
particularly acute in the western United States, a region experiencing its driest conditions since
at least 800 C.E. (Williams et al., [2022). Extended drought places tremendous pressure on urban
water districts, especially those without their own surface or groundwater rights that rely on
purchased water deliveries. In the face of shrinking and uncertain supply, water managers in
these arid regions must find effective ways to curb residential water demand or face costly welfare
losses from urban water rationing (Buck et al., [2016).

Economists often advocate for raising the price of water to reflect its scarcity value. However,
multiple factors inhibit water prices from adjusting to real-time supply conditions. First, most
residential water in the United States is supplied by municipal utilities that require a formal
ratemaking process to change prices, which hinders dynamic adjustments to supply shocks dur-
ing droughts (Hanemann, 1997). Additionally, the recognition of water access as a human right
coupled with political pressure means that prices often fall below the long-run marginal cost of
supply (Renzetti, 1992, [1999; Timmins| 2002a,b). Systematic underpricing fails to adequately sig-
nal the scarcity value of additional water consumption (Olmstead, 2010)EI Despite this, attempts
to increase prices raise serious equity concerns given that at least 10% of US households face
water affordability issues (Cardoso and Wichman, 2022).

Given the tension between sending appropriate scarcity signals and maintaining affordability,
how can residential water rates jointly address conservation and equity objectives during times of
severe drought? We address this question by studying the introduction of two drought surcharge
pricing programs during the 2011-2017 drought period in California, which included some of its
driest years in recorded history (Mount et al., 2023). We study two California water utilities that
implemented temporary surcharges. These surcharges were embedded within existing nonlinear
rate structures, and target excess water consumption relative to customer-specific baselines.

Using a panel of monthly bills for approximately 37,000 households, we estimate a series
of demand models to characterize how households responded to surcharges. One identification
challenge is that these surcharges coincided with several nonprice programs designed to promote
water conservation. To address this challenge, we use machine learning algorithms to predict
counterfactual consumption during the drought surcharge period. We build on the framework
of Burlig et al|(2020) and [Prest et al.| (2023) by using random forests to generate counterfactual
demand predictions during the surcharge period absent any policy changes. We use these coun-
terfactual predictions to construct an instrument for price changes in our demand models: the
difference in predicted household-specific prices with and without surcharges. This isolates the
exogenous policy-induced price variation needed to causally estimate price elasticities (Ito, 2014;
Sears, 2021; Ito and Zhang), 2023)).

Municipal utilities are also further constrained by revenue recovery requirements, which limit utilities to recover-
ing revenues adequate to cover their costs of supplying water. This is especially true in California due to Proposition
218, which limits the types of fees that local governments (including water utilities) can assess.



We estimate short-run price elasticities between -0.2 and -1.1, indicating that residential wa-
ter demand, while inelastic, does respond meaningfully to drought surcharges (Dalhuisen et al.,
2003; |Sebri, 2014). Our findings are notable for two reasons. First, we identify relatively large
short-run elasticities despite the expectation that long-run responses are typically more elastic as
households have more margins for conservation (Espey et al., 1997). Second, our setting isolates
exogenous variation in temporary drought surcharges rather than the permanent rate changes
commonly studied. The fact that such temporary price increases generate elasticities compara-
ble to or exceeding those in the broader literature highlights the effectiveness of surcharges in
inducing immediate conservation.

Our elasticity estimates are identified conditional on other nonprice drought policies, such as
information nudges and outdoor watering restrictions (e.g., Jessoe et al., 2021; |West et al., [2021).
Leveraging these estimates, we take additional steps that allow us to separately quantify the
contribution of price and nonprice measures to overall conservation, an exercise rarely possible
in this literature. Specifically, we combine our causal elasticity estimates with observed price
changes to estimate water conservation that directly driven by surcharges. Comparing these
back-of-the-envelope calculations to total conservation outcomes allows us to infer the share of
drought response that is directly attributable to the price incentives. Under reasonable assump-
tions, we find that surcharges account for roughly one-fifth of aggregate conservation, implying
that most short-run reductions stem from complementary nonprice interventions. These results
have clear implications for policymakers: while surcharges are effective at driving short-run
conservation, prices alone are unlikely to achieve the aggregate level of conservation needed in
emergency drought situations.

We extend our demand analysis to account for heterogeneity across household consumption
classes. We document significant heterogeneity in elasticities, finding that larger users have
the most inelastic demand. This result is in part due to the unique nature of the nonlinear
rate structures employed here, which assign individualized water allocations known as water
“budgets" to each household and define prices by comparing a household’s contemporaneous
consumption to its budget. The use of these “budget-based" rates (hereafter BBRs) potentially
shields such larger users from facing higher prices by assigning them larger budgets, delaying
the point at which higher marginal prices bind. These results have important implications for
urban water managers. While higher prices are able to induce a significant demand response,
the scarcity signal of surcharges is muted if price changes do not bind for enough households.

Heterogeneity in the price response raises important questions about how price increases af-
fect households across the income distribution. These concerns are heightened in our setting,
where each household’s baseline allocation determines their individualized thresholds for non-
linear price increases, creating a unique link between consumption behavior and the ultimate
marginal price they face. To examine these distributional implications, we extend our demand
framework to incorporate income heterogeneity and find that the lowest-income households are

the most price-responsive. We then assess whether drought surcharges altered the redistribu-



tive properties of BBRs. Using Lorenz curves of water expenditures and income in the spirit of
Levinson and Silval (2022), we find that surcharges under BBRs induce little change in overall
regressivity. While surcharges are not specifically designed with equity as the primary objective,
significant distributional impacts could occur if wealthier, higher-use households face significant
price increases relative to other household classes. Our results imply that layering the additional
complexity of surcharges on top of existing BBRs does little to improve regressivity, given that
prices may not bind for some high-use, high-income households.

We conclude by using our elasticity estimates to simulate how alternative rate structures dis-
tribute the burden of revenue generation across the income distribution, highlighting the trade-
off between equity and efficiency. We find that uniform (flat) rates perform similarly or slightly
worse than existing BBRs in terms of equity, but coupling a uniform rate with a variable fixed
charge tied to income largely addresses equity concerns. Additionally, BBRs are more regressive
than comparable increasing block rates (IBRs), suggesting that adding complexity to nonlinear
rate structures tends to introduce equity concerns without clearly improving economic efficiency.
Given that consumers often misunderstand complex nonlinear prices (Ito, 2014; [Wichman), 2014;
Brent and Ward| 2019; Shaffer|, 2020), utilities may prefer simpler rate structures unless the added
complexity yields clear welfare improvements. Nevertheless, water budgets combined with sur-
charges retain the ability to signal what the utility views as “wasteful” consumption, a potentially
valuable nonprice conservation tool whose effectiveness warrants further study.

Our findings contribute to several distinct literatures. First, we introduce new evidence to a
rich literature on the demand for residential water dating back several decades (e.g., Gottlieb,
1963; Howe and Linaweaver Jr, 1967 [Young, [1973). As climate change has fueled worsening
drought conditions, focus has shifted from characterizing baseline price elasticity estimates to
studying the ability of both price and nonprice policies to serve as demand-management tools
(e.g.,[Renwick and Archibald, 1998; Pint, 1999; Renwick and Green, [2000; Mansur and Olmstead),
2012). Our study contributes to the emerging literature studying the efficacy of various price and
nonprice conservation policies implemented during the California drought of 2011-2017, includ-
ing home water reports (Ferraro and Price, 2013; Brent et al., 2015} 2020; Jessoe et al., 2021; |Brent
and Wichman), 2022), public shaming and moral suasion (Sears| 2021; El-Khattabi, |2023), fees
and other excess water use fines (Sears| 2021; Pratt, 2023), and automated irrigation enforcement
(West et al., 2021; Browne et al., 2023). Our analysis is unique in that it focuses on identification
of short-run price responses driven by temporary surcharges. We find more elastic demand than
many other short-run studies. Additionally, since price and nonprice policies are nearly always
employed simultaneously, there is relatively little well-identified evidence about which approach
is more effective at inducing conservation (Browne et al., 2021). By decomposing the total con-
servation response for overlapping price and nonprice policies, our analysis highlights how price
policies alone are unlikely to drive meaningful levels of conservation.

Second, we contribute to the literature analyzing the distributional impacts of environmental

policy, specifically the ability of utility rates to serve as a redistributive policy instrument (e.g.,



Borenstein, 2012; [Borenstein and Davis, 2012; |Deryugina et al., 2019; Burger et al., 2020; |Levinson
and Silva, 2022). Many studies focus on energy prices, with relatively fewer papers studying the
redistributive aspects of water prices despite their acute importance to low-income households
(Randriamaro and Cook, 2024). Recent studies have begun addressing equity more directly,
finding that seasonal rates induce higher conservation in wealthier, higher-use homes and that
individualized rates may be either progressive or regressive under certain conditions (El-Khattabi
et al 2021; Smith, 2022). Our findings document that simpler uniform rates may outperform
complex nonlinear rates in terms of income redistribution (Whittington and Nauges, 2020; Fuente
et al.,|2021). Our analysis also complements studies like Burger et al.|(2020) and [Borenstein et al.
(2021) by illustrating the desirable equity benefits of income-based fixed fees. Understanding the
equity implications of water prices will only become more important under extended drought
(Cardoso and Wichman), 2022 [Wichman| [2023).

Third, our analysis offers insight into pricing strategies as discussed in the broader liter-
ature on optimal rate-setting for natural monopolies (e.g., Hotelling, 1938; |Coase, (1946; Brown
and Sibley, 1986; Kahn, [1988). Since prices are tied to budgets, households are effectively charged
individualized prices for the same quantity of water, violating standard allocative efficiency prin-
ciples that recommend a uniform volumetric price set at long-run marginal cost within a two-part
tariff (Coase, |1946; Levinson and Silva, 2022; Wichman, 2024). Given the multiple objectives that
utilities juggle, (Bonbright, [1961), accepting some level of allocative inefficiency may be desirable
if individualized budgets are particularly successful at achieving other priorities such as cost
recovery or political feasibility. Economists have understood since Ramsey| (1927) that charging
different prices to different consumer segments based on their distinct elasticities can prioritize
cost recovery while simultaneously minimizing welfare losses associated with price distortions.
Our finding that over-budget households are the most price-inelastic implies that the rate struc-
tures used here may effectively act as “quasi-Ramsey" prices, as more of the cost-recovery burden
will be placed on relatively inelastic households. While this may be desirable from an efficiency
perspective, the degree to which nonlinear rates actually minimize welfare losses may be under-
cut if water budgets prevent surcharges from effectively signaling scarcity to many large users.

Finally, BBRs are rapidly being adopted in arid regions with the hope that they can effectively
balance competing conservation, equity, and cost-recovery goals (Mayer et al., 2008; |/Allaire and
Dinar, 2022). Yet, relatively few studies have evaluated their performance directly, especially with
respect to distributional concerns. Baerenklau et al. (2014) estimate large demand reductions due
to the introduction of BBRs in a Southern California utility. Two other studies also find that BBRs
can induce conservation through information signals sent by individualized budgets (Baeren-
klau and Pérez-Urdiales, 2019; |Pérez-Urdiales and Baerenklau, 2019)E] Our results highlighting
potential conservation and distributional concerns with BBRs stand in contrast to these existing

studies and suggest a more nuanced view for policymakers considering their adoption.

20ther papers study individualized water rates that are similar to BBRs but with tiers defined using other metrics,
such as average winter consumption or annual cumulative consumption (Smith} 2022} Li and Jeuland) 2023).



2 Background

2.1 Drought of 2011-2017

Our study focuses on the 2011-2017 drought period in California, which was one of the most
severe droughts in the state’s recorded history. California entered into an extended period of
drier-than-average conditions in the latter half of 2011, and by mid-2012, large swaths of the
state were experiencing at least “moderate drought” (NOAA, 2023). In response to the extended
drought conditions, Governor Brown declared a state of emergency on January 17, 2014. The
order directed state resources toward water conservation campaigns and called on Californians
to reduce water consumption by 20%.

With drought conditions growing increasingly more severe, on April 1, 2015, Governor Brown
issued a second executive order that took the unprecedented step of mandating statewide water
cuts from urban water suppliers. Specifically, the order directed the State Water Resources Con-
trol Board to impose restrictions that would achieve a 25% reduction in statewide urban water
consumption relative to 2013 levels. The order also established a permanent water consump-
tion and conservation reporting requirement for urban water suppliers. These mandatory cuts
spurred utilities to adopt a variety of price and nonprice policy interventions and were in effect
for a year, until their withdrawal in May 2016.

California entered into an especially wet period in water year 2017 (starting in October 2016).
Specifically, January and February 2017 were the wettest months on record for some parts of
the state, including the northern Sierra Nevada mountain range and the San Joaquin River basin
(NOAA, 2017). These unusually high precipitation levels (including snowfall) helped replenish
surface water levels at critical reservoirs, while at the same time inflicting significant economic
damage due to flooding. The increased precipitation levels, combined with evidence that urban
water suppliers were succeeding to some degree at inducing conservation, caused the lifting of

the drought state of emergency on April 7, 2017E]

2.2 Utility Characteristics and Existing Rate Structures

We focus on efficacy of pricing policies of two water utilities in southern California as a drought
management tool. Both utilities provide drinking water and sewer services to residential cus-
tomers. Additionally, both utilities are heavily dependent on imported water sourced from the
Sacramento-San Joaquin Bay-Delta (through the State Water Project) and the Colorado River (by
way of the Colorado River Aqueduct), though one utility does hold limited groundwater rights.
The first utility serves an area closer to the Pacific Coast with a relatively denser population,

smaller lot sizes on average, and a relatively cooler climate. The second utility serves an area that

3Figure lays out a visual timeline of the events discussed in this section. More information on both the 2014 and
2015 executive orders can be found athttps://www.ca.gov/archive/gov39/2014/01/17/news18368/index.html|and
https://www.ca.gov/archive/gov39/2015/04/01/news18913/index.html, respectively. Information on the 2017 lift-
ing of the state of emergency can be found at: https://www.ca.gov/archive/gov39/2017/04/07/news19748/index.
html (accessed July 26, 2024).
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is further inland with a relatively less-dense population, larger lot sizes, and a relatively warmer
climate. Hence, we refer hereafter to the first utility as the “Coastal Utility” and the second utility
as the “Inland Utility”. As part of a data-sharing agreement, we refrain from publicly identifying
the two utilities here.

Both utilities price water through a BBR. BBRs are similar to traditional IBRs in that the vol-
umetric price for consuming an additional unit of water rises as households consume higher
quantities. The key difference between BBRs and their IBR counterparts is the assignment of
individualized water budgets to each household that also vary month to month. These indi-
vidualized budgets determine the price tiers a household faces, as opposed to IBRs, where the
consumption tiers that define prices are common to all households. For example, in a simple IBR
with a low and high price, all households will pay the high price for units above the common
threshold k. In a BBR, each household i has their own threshold, k;, that depends on household
and weather characteristics and is determined by a water budget formula. Both utilities use
roughly similar water budget formulas that define a two-part budget consisting of indoor and
outdoor components. Together, the indoor and outdoor budgets define what the utility views as
acceptable or non-“wasteful” water consumption for a household in a given month.

The calculation for household i’s indoor water budget in billing period ¢ is:
Indooryy = Persons; x GPCD; x Days;; x (1/748), (1)

where Persons is the household size, GPCD is an allotment made by the utility for water usage
in gallons per capita per day, Days is the number of days in the billing cycle, and (1/748) is
a scaling factor to convert from gallons of water to hundred cubic feet (1 CCF = 748 gallons).
Coastal Utility assumes a household size of four for single-family residential homes and three
for condominiums, and Inland Utility assumes a household size of three for all residential cus-
tomersﬁ Coastal allotted 65 GPCD through April 2015, and then 60 GPCD through the end of
our study period. Inland used a value of 60 GPCD throughout the study period.
The calculation of household i’s outdoor water budget in billing period ¢ is:

Outdoor;; = Area; X ET;; x PF; x (0.62/748), (2)

where Area is the amount of irrigable area on the customer’s property in square feet, ET is a
measure of monthly evapotranspiration in inches, PF (Plant Factor) is a constant assumed by
the utility about the types of vegetation present on a given property and the subsequent amount
of water required, and (0.62/748) is a scaling factor to convert from inches to gallons/square
foot, and then to CCFE] A household’s total water budget is determined by adding the indoor

41t is the responsibility of the household to contact the utility to update household size away from the default, and
verification is handled on a case-by-case basis. Widespread reliance on the default potentially limits one source of
cross-sectional variation in indoor budgets. In Appendix [D] we demonstrate how these household size assumptions
end up over-allocating water to many households by overestimating the number of persons in the home.

SHouseholds can also request to update the amount of irrigable square footage used to calculate their outdoor



and outdoor water budgets (i.e., Budget; = Indoor; + Outdoor;;). Household size and irrigable
area drive between-household variation in water budgets, while evapotranspiration drives both
between-household variation in budgets (across the spatial landscape) and within-household
variation (over the course of the year).

Figure 1| displays the nominal volumetric prices and consumption tiers over time within each
utility’s BBR structure. Water use within the customer’s indoor budget is charged at the lowest
volumetric prices. Consumption above the indoor water budget but still below the total budget
is charged at the Tier 2 price, representing outdoor consumption. Any consumption above this
is considered “over budget” and is charged at the relatively higher-tier prices. 125% and 150%
of total budget are the relevant thresholds between Tiers 3 and 4 consumption and Tiers 4 and
5 consumption, respectively. Coastal uses five price tiers and kept rates constant through April
2015, when it lowered the marginal price in its highest tiers. Inland implemented several small
increases over time. Inland also only used four price tiers for its first year of BBR implementation,
adding a fifth tier in October 2012. Coastal has a higher peak-to-minimum marginal price ratio
than Inland, with the highest marginal price being more than four to five times greater than the

lowest marginal prices over the course of the study period.

2.3 Surcharge Pricing in Response to Drought

Following the April 2015 executive order mandating 25% water cuts statewide, both Coastal and
Inland entered into elevated stages of their water shortage contingency plans (WSCPs). A crucial
aspect of each utility’s drought response strategy under its WSCP was the imposition of steep
price increases on over-budget water users through the use of drought surcharges. Throughout
the paper, we refer to these price changes implemented by the utilities as drought surcharges, as
opposed to the more traditional idea of conservation prices. Under conservation pricing, rates
are designed to permanently recover the lost revenue that results from selling less water over
the long run. Drought surcharges are designed to be temporary in nature and are not intended
to raise revenues through the highest tiers, only to cover the costs associated with purchasing
higher-cost water supplies under drought.

Figure [1] illustrates the structure of these surcharges and how they were layered within the
existing BBRs employed by the two utilities. Both utilities implemented such drought surcharges
from the summer of 2015 until February 2017. Under their WSCP, Coastal suspended the Tier
3 and 4 prices, and assessed a $7.43/CCF charge on all consumption over a household’s water
budget, the difference between the Tier 2 and Tier 5 price. For the first year under its WSCP,
Inland similarly suspended Tier 3 and Tier 4 rates. Inland also reduced outdoor water budgets
by 30% during this time. From June 2016 until the surcharges were lifted in February 2017,
Inland restored outdoor water budgets and the Tier 3 price, and charged all consumption over
125% of budget at the Tier 5 level. Drought surcharges are represented in Figure [1| by removing

budget. Coastal assigns a constant value for plant factor across households and months (0.8 before April 2015 and 0.7
after), and Inland assigns varying plant factors depending on the month and service start date.
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Figure 1: Rate Structures Over Time

Notes: The figure presents the nonlinear budget-based rate structures in place for each utility over the course of the study period.
Marginal prices for each consmption tier are given in nominal U.S. dollars/centum cubic feet ($/CCF). The solid red vertical bars
represent the period during which each utility’s drought surcharges were in effect, invoked under water shortage contingency plans.

the intermediate tier prices when the WSCP was in effect, denoted by the red vertical bars.
In practice, moving from 100% to 101% of a household’s budget during the WSCP results in
dramatic increase in marginal prices.

The drought surcharges implemented were intended to communicate scarcity and discourage
excessive consumption by having households face the highest tier prices immediately after go-
ing over budget while still preserving low marginal prices for under-budget consumption. Both
utilities implemented extensive campaigns to warn households about the impending drought
surcharges and to encourage within-budget consumption. The surcharges were implemented in
accordance with Proposition 218 restrictions that impact how utilities can price water under non-
linear rate structuresﬁ In both utilities, any excess revenues generated from drought surcharges
were directly recycled back into water efficiency programs.

®At least one municipal utility has been forced to alter its nonlinear rate structure in response to Proposition 218
concerns. See Capistrano Taxpayers Association, Inc. v. City of San Juan Capistrano, 236 Cal.App.4th 1123 (Cal. Ct. App.
2015). The case held that nonlinear water rates did not inherently violate Proposition 218, but that tier definitions
must be informed by the actual cost of supplying water service in each tier.



3 Data

We use four primary data sources in our analysis: household-level monthly water billing data,
demographic information from the US Census Bureau, property value and tax information from
county assessor offices, and local weather data. We obtain our monthly water billing records from
the California Data Collaborative (CaDC), a data nonprofit focused on water issues in California.
For both utilities, we restrict the data to include only single-family residential customers for
which we have a full or nearly-full panel (> 70 months) of billing records since the time when
BBRs went into effect (July 2011 for Coastal, October 2011 for Inland). After further cleaning
and imposition of filters, such as dropping extreme outliers, we are left with 1,989,521 customer-
month observations for Coastal (27,006 unique households) and 789,741 observations for Inland
(10,181 unique households). A complete description of the data cleaning steps is provided in
Appendix [Bl We merge prices to these data using publicly available rate information.

Additionally, we obtained demographic information on the distribution of household size,
race and income distributions at the census block group level from the US Census Bureau’s
American Community Survey (ACS) 2015 5-year estimates (US Census Bureau, 2015). We match
households to census block groups using the block group information provided in the billing
records. Next, we obtain tax assessor data for the two California counties in which the utilities
are located. These records include the property values (land and improvement value) and other
property characteristics, such as the total area of the lot, the number of bedrooms and bathroom:s,
and detailed property use code descriptions.

Finally, we obtain data on local weather beyond evapotranspiration (which was included in
the billing data for the purpose of calculating water budgets). We use high-resolution weather
data from the Parameter-elevation Relationships on Independent Slopes model (PRISM) and
the panel of daily weather observations across our entire study period used in Schlenker and
Roberts| (2009) to construct average minimum and maximum temperature and average and total
precipitation over the course of the billing period for each customer-month. We match our
households to the 2.5-by-2.5-mile grids using household latitude and longitude provided in the
billing records. We also use data from the California Irrigation Management Information System
(CIMIS) for some records in Inland where evapotranspiration and/or outdoor water budget
amounts were missing (CIMIS, 2018).

We present in Table [I] billing-record level summary statistics of key variables related to con-
sumption, budgets, and property characteristics for the households in our data. Households in
Inland tend to be larger homes, in terms of both of dwelling size (e.g., number of bedrooms) and
lot size (e.g., irrigable square footage). Households in Inland have roughly triple the amount of
irrigable square footage of homes in Coastal (on average). Recall that irrigable square footage is a
direct component of the water budget calculation formula, and thus leads to higher average out-
door and total budgets in Inland. Average monthly water consumption for households in Inland
is nearly double that of Coastal, which is also likely driven by the need for more outdoor water

consumption due to larger lawns. Inland also experiences significantly greater evapotranspira-



Table 1: Summary Statistics

Coastal Mean Std. Dev. Inland Mean  Std. Dev.
Water consumption (CCF) 12.77 9.85 Water consumption (CCF) 2457 20.83
Indoor budget (CCF) 10.11 2.07 Indoor budget (CCF) 9.40 3.61
Outdoor budget (CCF) 7.29 8.09 Outdoor budget (CCF) 30.51 37.49
Total budget (CCF) 17.40 8.88 Total budget (CCF) 39.91 37.88
Household size 3.96 0.73 Household size 4.07 1.41
Gallons/capita/day 63.05 2.44 Gallons/capita/day 60.00 0.00
Days in billing period 30.46 2.80 Days in billing period 30.39 3.58
Irrigable square footage 2,717.04  2,745.27 Irrigable square footage 8,810.87  8,834.65
Evapotranspiration (inches) 4.16 1.33 Evapotranspiration (inches) 5.25 1.92
Max. Temp. (Deg. C)* 24.72 3.61 Max. Temp. (Deg. C)* 27.14 5.75
Total Precipitation (mm)* 17.36 29.19 Total Precipitation (mm)* 17.45 25.07
No. of bedrooms* 2.53 1.59 No. of bedrooms* 391 0.79
Property value (1,000 USD)* 485.37 329.02 Property value (1,000 USD)* 388.19 144.85
Median income (1,000 USD)* 114.18 33.59 Median income (1,000 USD)* 99.66 23.70
Unique Accounts 27,006 Unique Accounts 10,841

Total Billing Observations 1,989,521 Total Billing Observations 789,741

Notes: The table presents billing record level summary statistics for each utility separately. Summary statistics are presented for the
full period of billing records available: July 2011-August 2017 for Coastal and October 2011-December 2017 for Inland. All variables
are sourced from the billing microdata except for those variables denoted with an asterisk (*), which are sourced from one of the

supplemental data sources described in Section [}

tion than Coastal, further driving larger water consumption needs. Finally, the Coastal service
area is wealthier, as indicated by higher average property values.

4 Empirical Framework

We first study the efficacy of surcharges as a conservation tool by characterizing the demand
response induced by the surcharges. Our primary parameter of interest is the short-run price
elasticity of demand in response to the surcharges. Two primary challenges threaten the iden-
tification of causal elasticity estimates. First, utilities often implement many nonprice water
conversation programs during droughts at the same time as price changes. During the drought
of 2011-2017, utilities experimented with a suite of policies to curb demand, such as public infor-
mation campaigns, rebates for installing turfgrass, water audits, etc. Simply observing changes in
water consumption before and after implementation of drought surcharges cannot identify how
much of any observed water conservation can be attributed to prices alone. The second econo-
metric challenge is the well-known issue of simultaneity between prices and quantity that arises
under nonlinear rates (Olmstead et al., 2007; |Olmstead), [2009; Wichman et al., 2016). With BBRs
(as well as traditional IBRs), marginal and average prices increase mechanically as consumption
increases. Failing to account for this source of endogeneity will result in ordinary least squares
(OLS) demand estimates that are biased and potentially upward sloping.

We design a novel identification strategy that solves both of these econometric issues by
exploiting exogenous, policy-induced price changes to identify the causal effect of surcharge
pricing on demand. First, we train machine learning models using data before the declared
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drought emergency to generate counterfactual out-of-sample consumption predictions for each
household during the drought surcharge period. These counterfactuals represent what house-
hold consumption would have been absent the many changes in price and nonprice policies
implemented during the drought emergency. We then use the counterfactuals to define a pre-
dicted price change that captures exogenous changes in relative exposure to drought surcharges.
We use the predicted price change as an instrumental variable in a two-stage least squares (25LS)
demand framework to instrument for the actual marginal or average price change experienced

by customers.

4.1 Counterfactual Demand Predictions

We begin our analysis by using machine learning algorithms to generate counterfactual predic-
tions for monthly household-level water consumption. Specifically, we use random forests to
train models of household water consumption using data collected before the drought emer-
gency was declared. We use random forests in part because of their ability to capture highly
complex interactions and nonlinear relationships between candidate predictor variables (Hastie
et al},[2009). In Table[A.T} we provide evidence that using random forests improves predictive ac-
curacy in the predrought surcharge pricing period over simpler OLS predictionsﬂ Prior literature
also shows that random forests perform well in predictive settings where the goal is ultimately
to recover causal estimates of policy impacts on demand for utility services, such as electricity
(Prest et al., [2023).

The time period used to train the random forests is all months prior to January 2014, when
the first drought emergency was declared. Although drought conditions had begun to worsen
and some drought-related policies, such as conservation messaging, were already under way
during this time, we are limited by our lack of data before 2011 for either utility. By limiting our
training period to observations from 2011-2013, our approach defines the relevant counterfactual
as the level of baseline water consumption during early stages of drought but before anticipatory
consumption effects related to intensive drought emergency policies (either price or nonprice)
began. Our approach mirrors that of Burlig et al., (2020) and [Prest et al.| (2023) in generating
out-of-sample predictions for years outside of the training sample to represent a counterfac-
tual without any policy change. We train the algorithm using a number of candidate predictor
variables, including weather data, household and property characteristics, water budgets, demo-
graphic data at the census block group level, month-of-sample dummies, and zip-code dummies.
We implement the algorithm by generating 500 trees separately for each utility. We then use the
resulting outputted ensemble of trees to generate out-of-sample predictions from 2014 onward.
We are particularly interested in the out-of-sample predictions from July 2015 to February 2017,
when drought surcharges were in place for both the Coastal and Inland utilities.

"In Appendix |C} we provide results from a series of diagnostic exercises to ensure the reliability of our generated
counterfactual predictions. These include comparing model errors (Figure and Table [A.I), tuning several key
random forest model parameters (Figure [A.3), examining variable importance plots for our final predictions (Figure

11
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Figure 2: Predicted and Actual Consumption Over Time

Notes: The figure presents the time series of average actual and predicted consumption in each month-of-sample for each utility
separately. The training period data used to train the random forest algorithm up to December 2013 is unshaded. The period in
which the drought emergency had been declared but drought surcharges were not yet in effect is shaded in pink (January 2014 to
June 2015). The period in which drought surcharges were in effect is shaded in red (July 2015-February 2017). Actual consumption
(blue solid line) falling below predicted consumption (navy dashed line) indicates water conservation in the aggregate.
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We demonstrate our approach visually in Figure 2| The figure shows the time series for both
average predicted (§;;) and actual consumption (g;;) separately for each utility. We partition the
figures into three discrete time periods: the pre-drought months used to train the random forest
algorithms (“Training Period,” mid-2011 to December 2013); the period in which the drought
emergency had been declared but drought surcharges were not yet in effect (“Drought Emer-
gency,” January 2014 to June 2015); and the period in which drought surcharges were in effect
(“Drought Surcharge,” July 2015 to February 2017). As expected, during the training period, the
predictions perform quite well on average. After the training period, g;; falls below §;; in the
aggregate, which remains at a similar level to that of the training period.

The gap in Figure 2| between §;; and g;; that emerges in 2014 represents aggregate water con-
servation during the drought. This difference arises because the predictions, despite adjusting for
contemporaneous weather conditions, do not incorporate any drought-related policies enacted in
2014 and beyond. The difference can be attributed to the full suite of drought policies, including
the drought surcharges. That conservation occurs in the drought emergency period before price
changes were implemented demonstrates that nonprice conservation is present in our setting,

and highlights the importance of isolating the role of prices from other drought policies.

4.2 Construction of Price Instrument

We next turn to addressing the endogeneity of prices and quantity, which arises in this setting
due to the simultaneous determination of quantities and prices under nonlinear rates. With BBRs,
the marginal price faced by a household rises with quantity consumed relative to the budget. We
address the simultaneity of price and quantity by exploiting predetermined differential exposure
to the exogenous change in price due to drought surcharges. First, we use §;; and water budget
formulas to generate predicted prices during the drought surcharge period. Specifically, we
calculate the price the household would have faced under surcharge pricing based on its historical
consumption patterns and prevailing weather conditions. This predicted price (p;) is defined by
predicted consumption relative to the budget and serves as the first input into our instrument.
Next, we use §;; to calculate the price the household would have paid for that level of predicted

consumption before the drought emergency was declared (p"°

). This second predicted price
represents a baseline price that households regularly faced before the drought emergency.

Our final instrument is the difference (in natural logarithms) of these two predicted prices:
Alog(pir) = log(pi) — log(ph*). Taking the difference of these two predicted prices isolates the
exogenous variation in prices that is induced by the policy-induced rate structure change. For ex-
ample, households that regularly consume well under their budget faced little to no price change
as a result of the imposition of drought surcharges, but households who regularly consumed
in the higher consumption tiers before the drought faced large changes in inframarginal and
marginal prices when surcharge pricing was implemented. The instrument is similar to other

“simulated” instruments regularly used in the water and electricity demand literature (e.g., Ito,

, and generating predictions under alternative approaches (Figure [A.5).

13



2014; Sears, 2021), and also has the spirit of a Bartik-type shift-share instrument in that it captures
differential exposure to a common price shock (Bartik, [1991; |Goldsmith-Pinkham et al., 2020).

Figure (3| demonstrates how the instrument works using average prices. The figure presents a
binscatter that plots the means of predicted contemporaneous prices (represented by blue tri-
angles) and predicted prices using pre-drought surcharge pricing (represented by light blue
squares) across the distribution of predicted consumption relative to the budget in two per-
centage point bins. The figure shows that the gap between these two measures (which can be
thought of as the predicted price difference instrument) is on average quite small whenever we
predict that a customer will consume under the budget. This makes intuitive sense, as prices
do not rise much for these households. This gap grows larger with predicted consumption rel-
ative to budget, indicating households with higher baseline consumption levels relative to their
assigned budget faced relatively higher exposure to drought surcharges due to their pre-existing
consumption patterns. Actual average prices faced by the household-month observations in each
bin (represented by navy circles) are also plotted and are positively correlated with the instru-
ment, indicating a potentially strong first-stage.

The validity of Alog(p;:) as our instrument ultimately rests on whether it satisfies the exclu-
sion restriction; that is, the price difference instrument must isolate exogenous variation in price
changes while simultaneously being uncorrelated with unobserved drivers of conservation. Two
features are particularly attractive in establishing exogeneity. First, the underlying consumption
predictions are generated solely from prediction models trained on data that predate the intro-
duction of drought surcharges, and therefore reflect predetermined consumption patterns that
are uncorrelated with the exogenous introduction of the surcharges themselves. Second, the re-
sulting predicted price differences capture price variation that stems solely from changes to the
rate structure, and those difference are unaffected by a given household’s response to nonprice
conservation efforts or idiosyncratic demand shocks.

At this point, the primary remaining threat to identification is if a household’s (latent) level of
nonprice conservation strongly correlates with Alog(p;;). For example, if households with larger
predicted price differentials are also more likely to engage in nonprice conservation, then the
instrument may be correlated with the error term. Subsequently, nonprice conservation effects
will be mistakenly attributed to price changes, which will bias elasticity estimates upwards in
absolute value. While this is theoretically possible, the fact that surcharges were implemented
within BBRs specifically helps to alleviate concerns about this potential threat to identification.
Given the inherent structure of BBRs, both small and large users in absolute terms can regularly
exceed their water budget and face large predicted price differentials as a result of surcharges.
This introduces substantial heterogeneity in the types of households that face large predicted
price differentials and reduces the likelihood of a structural correlation between households with
high price differentials and those engaging in substantial non-price conservation. We document
further efforts to quantitatively account for nonprice conservation when discussing results in
Section Bl
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Figure 3: Relationship Between Instrument and Actual Prices

Notes: The figure presents a binscatter that illustrates the relationship between the two components of our instrument and actual
prices faced. Actual average prices faced by household-months are plotted over the distribution of predicted consumption relative to
budget in a series of two percentage point bins with navy circles. Predicted prices under drought surcharge pricing are represented
by blue triangles, and predicted prices using predrought surcharge period prices are represented by light blue squares. The red
vertical lines represent the BBR tier thresholds.
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4.3 Demand Estimation

We use our predicted price changes, Alog(p;;), as an instrument in a reduced-form demand
framework to estimate causal price elasticities in response to drought surcharges. We estimate a

standard log-log demand equation as follows:
Alog(qit) = pAlog(pit) + 6Wir + a; + T + €it (3)

where i indexes households and t indexes billing periods (or months). Alog(g;t) is our de-
pendent variable and represents the difference between logged actual consumption and the
household’s month-specific baseline level of logged consumption from 2011-2013, before the
drought emergency: Alog(qi:) = log(qit) — log(di)F| This difference captures the total effect
of drought surcharge pricing and other nonprice drought policies on consumption within a
household. The primary explanatory variable is Alog(p;), which represents the difference in
logged prices faced for a household’s observed consumption induced by surcharge pricing:
Alog(pi) = log(pit) — log(ph). We instrument for this endogenous price difference with our
predicted price difference Alog(p;:) in the first stage of the 2SLS framework. We estimate models
using both average and marginal prices, given the debate around what price households respond
to under nonlinear rates (Nataraj and Hanemann, 2011; Ito, 2014; Wichman) 2014; Shaffer, |2020;
Cook and Brent} 2021). We assume, loosely, that average price responsiveness is driven by a form
of rational inattention in which households would optimize according to marginal price levels
but the information costs of doing so are prohibitive (Sallee, 2014; Wichman), 2017).

We also control for Wj;, a vector of contemporaneous weather variables, including evapotran-
spiration, precipitation, and temperature (as well as their squares). As is standard in reduced-
form models of demand in panel data settings, we include both household («;) and billing period
(1) tixed effects. We calculate standard errors in two primary ways: first by clustering at the
household level and second by using a bootstrapping procedure developed to account for errors
associated with our counterfactual predictionsﬂ The time period included is from July 2015 to
December 2016, when the drought surcharges were in effect. We drop January and February
2017 from our primary results due to the heavy levels of precipitation in these months, which
can cause issues with our out-of-sample predictions. The parameter of interest in Equation 3| is
B, which can be directly interpreted as the short-run price elasticity of demand for residential
water in response to the temporary drought surcharges. This is the policy-relevant parameter
because it characterizes the ability of prices to deliver immediate conservation when needed
under drought, as opposed to estimating longer-run changes in conservation due to behavioral
adjustments or upgrades to a household’s water-using capital stock.

8The baseline measure §;; is defined as a household’s month-of-year specific average over the years 2011-2013. For
example, to construct Alog(g;;) for a household in August 2015, its consumption for the months August 2011, 2012,
and 2013 is averaged together (log(7;;)) and subtracted from actual consumption in August 2015 (log(g;;))-

9Our standard errors are complicated by the fact that our counterfactual predictions are measured with error. We
provide a full exposition of our bootstrapping procedure in Appendix[C]
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5 Results

5.1 Price Elasticity Estimates

We implement the framework outlined in Section [4] to identify the causal effect of drought sur-
charges on water demand under BBRs. Before estimating our demand regressions, we first check
for visual evidence of “bunching” in the consumption distribution to understand if households
are responding to nonlinear prices by strategically consuming at kink points in the marginal price
schedule (Saez, 2010; Ito, 2014). We check for bunching along the distribution of consumption
relative to budget as opposed to consumption alone (which is standard) due to the nature of
BBRs Figure presents histograms of these distributions during the drought surcharge pe-
riod for the two utilities. No clear visual evidence of bunching appears at any of the kink points
in the BBR schedule, which implies that average price or some other expected price measure may
be the more salient price that households respond to (Ito, 2014).

Table 2| presents the base results from estimating Equation Given the log-log functional
form, the price coefficients can be directly interpreted as an elasticity, particularly the short-run
price elasticity of demand in response to the introduction of temporary surcharges. Columns
(1)—(2) present results using average volumetric price (AP) and marginal price (MP) for Coastal,
and columns (3)—(4) present corresponding results for Inland We report the Kleibergen-Paap
rk Wald first-stage F-statistic for each specification, which are relatively large and consistent
with the intuition from Figure 3| that we have a strong first stage (Kleibergen and Paap, [2006).
Bootstrapped standard errors are presented below coefficient estimates in bracketslT_S]

The elasticity estimates reported in Table 2| range from -0.22 (inelastic) to -1.07 (roughly unit
elastic). These elasticities are within the range of standard estimates from prior meta-analyses of
residential water demand studies, which generally report a central price elasticity estimate of -0.4
(Espey et al} 1997; Dalhuisen et al., 2003; [Sebri, 2014). Despite their similarity to the extant liter-
ature, these results are striking for two reasons. First, our analysis is concerned with estimating
the short-run price elasticity induced by drought surcharges. The meta-analyses cited previously
show that long-run price elasticity estimates are generally more elastic than short-run estimates,
as households have more time to adjust to higher prices by making changes such as upgrading
their water-using capital stock (e.g., dishwashers, washing machines, etc.). The elasticity esti-

mates we report here are on the higher end of many short-run estimates, and particularly in the

10For example, 10 CCF may be above budget for some households and below budget for others. Theoretically, there
is no reason why bunching should occur at any single point in the consumption distribution. However, households
could bunch at the kink points of the nonlinear BBR schedule (100%, 125% and 150% of budget).

H'We estimate all specifications separately for each utility using the “ivreghdfe” package in Stata (Correia, 2018).

12Tableclemonstrates the need to instrument for endogenous price changes, as elasticities estimated from models
that do not instrument for price are positive and suggest upward-sloping demand.

13Table presents the same results with the original standard errors clustered by household. Our bootstrapped
standard errors in Table [2| are roughly 25-35% largely than the standard errors clustered at the household level.
However, the coefficients are estimated with enough precision that statistical significance under standard levels is
unaffected. This result, combined with the computational time constraints associated bootstrapping, means that we
move forward with presenting clustered standard errors in other results reported in this paper.
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Table 2: IV Demand Regressions

Coastal Inland

1) 2 3) “4)

AP MP AP MP
A log(AP) -0.44%%* -1.07%*%*

[0.05] [0.07]
A log(MP) -0.22%** -0.48%**
[0.02] [0.03]

Observations 477,110 477,110 203,187 203,187
Households 26,988 26,988 10,840 10,840
Household FE Y Y Y Y
Month-of-Sample FE Y Y Y Y
First-stage F-stat 2,737 2,199 4,214 5,688

Notes: The table presents estimates of 3 from estimating Equation
The dependent variable is the difference between contemporaneous
and baseline consumption, Alog(g;). Endogenous price differences
are instrumented for in the first stage using Alog(p;t). The time pe-
riod included is from July 2015 to December 2016. Columns 1 and 3
instrument for average price differences, and Columns 2 and 4 instru-
ment for marginal price differences. All specifications include a vector
of weather covariates, including evapotranspiration, precipitation, tem-
perature, and their squares. Bootstrapped standard errors calculated
according to the procedure outlined in Appendix |C|are presented be-
low coefficient estimates in brackets. ***: p < 0.01; **: p < 0.05; *: p <
0.1.

case of Inland are more comparable to many long-run price elasticity estimates@ This suggests
that surcharges were effective to some degree in eliciting conservation under during drought.

Second, our results are notable because most prior studies estimate price elasticities in re-
sponse to permanent changes in prices. However, in our setting, the price variation is largely
driven by the introduction of temporary drought surcharges. Households were well-informed
that the surcharges were imposed in response to severe drought conditions and not intended to
remain in place permanently. Therefore, it is unlikely that households would have made changes
to their water-using capital stock due to such temporary price increasesE] Given this fact, we
would expect ex ante that our price elasticity estimates would be relatively more inelastic, all else
held equal. The fact that we find elasticity estimates comparable to (and in some cases, more
elastic than) the extant literature runs counter to these expectations and lends further evidence
to the notion that that price increases can induce conservation in the short run.

Two other notable features emerge from the base elasticity estimates. First, and consistent
with other recent analyses, we find more elastic demand with respect to the average price com-
pared to the marginal price, with elasticity magnitudes roughly double that of marginal price
across specifications (Ito| 2014; Wichman, 2014; Browne et al.,[2021). Second, as referenced briefly

A recent quasi-experimental study in a similar setting (urban demand in California during drought) reports
short-run price elasticity estimates of -0.44 to -0.32, and long-run price elasticity estimates of -1.5 to -0.6 (Sears, 2023).

151t is possible that customers might make changes to their water-using capital stock due to nonprice policies, such
as rebates or social pressures. However, those effects are not driven by exogenous changes in prices, which we exploit
through our IV approach.
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above we note the heterogeneity in the elasticity estimates between Coastal and Inland. Esti-
mated elasticities are significantly larger for Inland than for Coastal. This is plausibly driven by
the presence of larger average lawn sizes for Inland, which implies that a greater proportion of
overall consumption by Inland households is comprised of water used for relatively price-elastic
outdoor purposes as opposed to necessary indoor activities like drinking, cooking, and bathing.

As discussed previously in Section @} the primary threat to identification is if nonprice
conservation is systematically correlated with the predicted price instrument. Although non-
price conservation is unobservable in our setting, we attempt to control for it by exploiting
the fact that we have data during a time period (2014 to mid-2015) when drought awareness
was high and nonprice conservation efforts were underway, but before drought surcharges were
implemented. We construct a proxy variable for nonprice conservation by taking each house-
hold’s month-specific logged consumption average during this intermediate period, and sub-
tracting from it the same logged baseline consumption during 2011-2013 constructed previously:
Alog(gh?) = log(g2147201%) — 1og(72°117213) This difference captures the amount of conserva-
tion in each month that households undertook before the formal introduction of price increases
through surcharges. Figure displays a binscatter where average values of Alog(p;;), our pre-
dicted price instrument, are plotted in each of 50 discrete bins of Alog(4}*) during the surcharge
pricing period for both utilities. Figure along with the low overall correlation coefficient
between the two variables (r = —0.02) suggests that there is only weak evidence of a systematic
correlation between the instrument and nonprice conservation. We report as a robustness check
a series of estimating results in Table where we directly include Alog(4") as an additional
control variable to proxy for nonprice conservation. Resulting elasticity estimates are of a similar
magnitude but become slightly less elastic across all four models, which is consistent with the
notion that the instrument may pick up some limited nonprice conservation effects. This robust-
ness exercise helps to assuage concerns that our short-run elasticity estimates are significantly
overestimated [1%

5.2 Contribution of Prices to Aggregate Conservation

Our empirical framework outlined in Section [4] defines the relevant counterfactual as the con-
sumption had no drought policies (price or nonprice) been enacted. As a result, the causal
elasticity estimates presented here represent households” short-run responsiveness to surcharge
pricing conditional on the presence of the full suite of the other nonprice policies (e.g., turfgrass
rebates, conservation messaging) employed by each utility. This conditional elasticity is the
policy-relevant parameter of interest, as it is rare for utilities to only use price changes without
any nonprice policies to promote conservation during droughts. In our setting Figure [2| shows
evidence of nonprice conservation before surcharges were enacted. Given the clear presence

16We subject our primary elasticity estimates to additional robustness checks, which largely yield similar results. In
Table [A.5|we alter the form of 7; to control for fixed effects at the month-of-sample by zip-code level. In Table we
use the prediction errors generated from our counterfactual predictions directly as the dependent variable.
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of both price and nonprice conservation in our setting, we next characterize how much of the
aggregate water conservation observed in each utility is directly attributable to the drought sur-
charges themselves. To do so, we implement an approach that combines information on our price
elasticity estimates, observed changes in prices under surcharges, and the total observed water
conservation to back out estimates of the proportion of water conservation directly attributable
to price changes.

The first input to this exercise is the price elasticity of demand, which we source from Table
The second input is a characterization of the price changes that households perceived under
surcharges. The endogeneity of nonlinear prices again poses a problem here. Simply using ac-
tual observed price changes likely underestimates the true price-based conservation, as it does
not account for the reverse causality inherent in nonlinear pricing (i.e., some households appear
to have lower price changes precisely because they are responding to higher prices by lowering
their consumption). At the same time, assuming that predicted price changes represent the true
price change likely overestimates price-based conservation, as it attributes non-price conserva-
tion to changes in the price itself. To more accurately characterize the true price change that
households faced, we calculate the average prices under surcharge pricing that would have been
paid by households during the period in which nonprice conservation had begun but surcharges
had not yet been enacted (2014-mid 2015). We then compare this to actual prices faced from
the predrought period of 2011-2013 to calculate price changes. Characterizing the actual price
change faced by households in this way isolates the change in price that surcharges introduced
after accounting for nonprice conservation, and thus avoids the issue of systematically under- or
over-estimating price changes inherent in the other two approaches.

The third and final input is an estimate of the aggregate conservation achieved by the two
utilities. Rather than compare consumption under surcharge pricing to earlier years, we take
predicted consumption (§;;) during the drought surcharge period as the appropriate counter-
factual, as these predictions adjust for contemporaneous weather conditions and best represent
what consumption would have been in the absence of drought-related policies. We predict that,
on average, households would have consumed 13.73 CCF per month in Coastal and 30.49 CCF
per month in Inland during the drought surcharge period had no drought policies been imple-
mented. Average prediction errors, which are the difference between actual consumption and
our predictions, are —2.5 CCF for Coastal and —9.3 for Inland. Dividing these prediction errors
by the predicted consumption yields our estimates of total conservation for each utility: an 18.5%
reduction in consumption for Coastal and a 30.5% reduction in consumption for InlandE]

We bring our elasticity estimates, price change estimates, and estimates of total conservation

together in Table (3| to demonstrate demand responses directly attributable to the drought sur-

7While the statewide goal was to achieve a 25% reduction in urban water consumption relative to 2013, the State
Water Resources Board assigned utilities differing conservation targets according to their prior baseline consumption
levels in terms of GPCD from summer 2014. These targets ranged from 4% to 36% for the highest-consuming utilities.
Under this regulation, Coastal was assigned a 20% reduction target, and Inland was assigned a 32% reduction target.
Our results imply that both utilities were close to achieving these targets, though our methodology differs from
California’s method of determining compliance.
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Table 3: Decomposing Price-Driven Water
Conservation Effects

Coastal
AP MP
Price Conservation (%) -3.4 -8.3
[-4.1,-2.7]  [-10.0,-6.6]
% Aggregate Conservation 18.3 451
[14.522.1] [36.0,54.3]
(1) Price Elasticity -0.44 -0.22
(2) Baseline Price 1.64 2.27
(3) Price Increase 0.13 0.87
(4) Total Conservation (%) -18.45 -18.45
Inland
AP MP
Price Conservation (%) -6.4 -5.1

[-72,5.6]  [-5.8,4.5]

% Aggregate Conservation 21.0 16.8
[18.3,23.8] [14.6,19.0]
(1) Price Elasticity -1.07 -0.48
(2) Baseline Price 2.26 2.81
(3) Price Increase 0.14 0.30
(4) Total Conservation (%) -30.49 -30.49

Notes: The table presents estimates of water conservation
directly attributable to drought surcharges. Price Conser-
vation (%) represents the estimated water conservation di-
rectly attributable to prices. % Aggregated Conservation
represents the percentage of aggregate observed conserva-
tion in each utility that is attributable to the price-based
conservation. These estimates are constructed as nonlin-
ear combinations of elasticity coefficients from our demand
models in Table[2]along with price change and conservation
scalars. 95% confidence intervals using bootstrapped stan-
dard errors are presented below point estimates in brackets.

charges themselves. In the Price Conservation (%) row, we present changes in demand implied
by our regressions by using the point-elasticity of demand formula and multiplying the relevant
elasticity estimates by the corresponding percentage change in price. In the % Aggregate Conser-
vation row, we divide the price conservation estimate by the total observed conservation to get an
estimate of the percentage of the total observed conservation that is directly attributable to prices.
Our results show that in Coastal, the price changes under surcharges induced a 3.4-8.3% demand
reduction, which accounts for 18.3-45.1% of total observed conservation. The analogous demand
reductions for Inland are 5.1-6.4%, which represents 16.8-21.0% of total observed conservation.
Most model specifications imply that drought surcharges alone likely accounted for only around
one-fifth of the total conservation observed across the two utilities Even the most generous

18These estimates are smaller but in the general ballpark of those reported in Browne et al.| (2021), who attempt
a similar exercise and attribute 40—44% of the total demand reduction observed in Fresno under drought to price
changes, albeit under uniform rates and more limited price variation.
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model estimates can only attribute roughly half of observed consumption to prices alone. This
is surprising given the fact that our elasticity estimates are relatively large in magnitude. One
explanation is that the consumers do not face significant exposure to high prices despite the large
change in marginal prices as evidenced by the observed price change in Table 3l Average prices
only increased by 8% in Coastal and 6% in Inland. This is partly due to the fact that nonprice
conservation reduces the exposure to high marginal prices for over-budget consumption. Our re-
sults suggest that, although surcharges can be effective at inducing conservation during drought,
nonprice conservation policies play a relatively larger role in managing demand, at least in the
context of the BBRs considered here.

5.3 Characterizing Heterogeneity in Demand Response

So far, the analysis has not addressed the possibility that households may exhibit a heteroge-
neous response to the introduction of surcharge pricing based on pre-existing characteristics. We
estimate a variant of Equation [3| that allows for heterogeneous responses to surcharge pricing
based on two household characteristics defined using pre-drought data: average budget class
and average total consumption. The budget class is the typical budget tier that a consumer faced
in 2011-2013 before the introduction of drought policies. We focus on three budget classes—under
budget (< 100%) between 100 — 150%, and > 150% of budget. These consumers will experience
different price changes relative to pre-surcharge pricing. A household that typically uses less than
their budget will see very large marginal price increases for any demand shocks that push them
over budget (though average price changes may be relatively small). Households regularly using
between 100-150% will see both marginal and average price increases as a result of surcharge
pricing. Households that typically consume more than 150% of budget will not experience any
marginal price increase, but their total bill will rise due to inframarginal price increases on their
over-budget consumption. As such, we interact dummy variables for each budget class with our
price change variables. We also repeat the exercise using the simpler definition of predrought
consumption terciles to facilitate comparisons.

Results of the heterogeneous demand estimation exercise assuming marginal price respon-
siveness are reported in Table @EI Columns (1) and (3) present results for budget classes, and
Columns (2) and (4) present results for consumption terciles. The omitted interaction terms are
for the subgroups consuming below their budget and the first consumption quartile, respectively.
Therefore, the base coefficient Alog(MP) represents the price elasticity for the omitted group, and
the elasticity for the higher consumption classes can be calculated as the linear combination of
the base coefficient with the coefficient for the corresponding interaction. For example, column 3
indicates that regular under-budget households in Inland exhibit a price elasticity of -0.93, those
regularly using 100 — 150% of budget exhibit a price elasticity of -0.38, and those regularly using
> 150% of budget exhibit a price elasticity of -0.28. Across all model specifications in Tables[#and

a consistent pattern appears: all interaction terms are positive and statistically significant,

O Table presents the equivalent results under average price responsiveness.
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indicating that households who regularly consumed under-budget are the most responsive to
drought surcharges. Additionally, elasticities monotonically decrease in absolute value (become

more inelastic) as one moves up to higher budget or consumption classes across all specifications.

Table 4: Heterogenous Price Elasticities, Marginal Price

Coastal Inland

¢y @ ®) (4)

Budget Consumption Budget Consumption

A log(MP) -0.32%** -0.89%** -0.93*** -0.73%**
(0.02) (0.12) (0.06) (0.05)
A log(MP) x Budget (100-150%)  0.18*** 0.55%**
(0.02) (0.05)
A log(MP) x Budget (>150%) 0.23%** 0.65***
(0.06) (0.05)
A log(MP) x Q2 0.50*** 0.30%**
(0.11) (0.05)
Alog(MP) x Q3 0.72%** 0.33***
(0.11) (0.05)
Observations 477,110 477,110 203,187 203,187
Households 26,988 26,988 10,840 10,840
Household FE Y Y Y Y
Month-of-Sample FE Y Y Y Y
First-stage F-stat 501 78 698 1,107

Notes: The table presents estimates of 8 from estimating a variant of Equation [3} The dependent
variable is the difference between logged contemporaneous and logged baseline consumption,
Alog(git) = log(git) — log(git). Logged endogenous prices are instrumented for in the first stage
using Alog(p;;), which is interacted with dummy variables for terciles of predrought budget and
consumption classes. The time period included is from July 2015 to December 2016. All columns
instrument for marginal price differences. All specifications include a vector of weather covariates,
including evapotranspiration, precipitation, temperature, and their squares. Standard errors are
clustered at the household level and are presented below coefficient estimates in parentheses. ***:
p <0.01; **: p <0.05; *: p <0.1.

These results provide important context to our previously discussed findings. Elasticities
from Table |2 suggest a clear demand response in response to surcharges, yet Table 3] documents
that the surcharges are likely not driving most of the observed conservation. In addition to the
budgets shielding households from aggregate price increases, the heterogeneous elasticities in
Table {4] help reconcile these two results. Results demonstrate that the households who are most
responsive to price changes are those least likely to actually ever face the drought surcharges:
under budget households. These households can be large or small users in aggregate terms,
but their defining feature is that consumption regularly falls below their assigned water bud-
gets, effectively shielding them from facing the surcharges. This finding helps to explain why
surcharges were not the primary driver of water conservation, as the households that regularly
faced the surcharges exhibited the most inelastic demand response. Tying surcharges to budget
assignments in this way is potentially regressive if it shields wealthier, larger users with large

lawns and generous water budgets from paying high marginal prices on their outdoor water
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consumption, which subsequently provides an implicit subsidy from low- to high-income users.

6 Distributional Analysis

We now turn our focus to the distributional implications of the drought surcharges. Results
from the demand estimation document that, while households did undertake conservation ef-
forts in response to surcharge-driven price changes, the intensity of this demand response varied
significantly across heterogenous consumption groups. Inelastic demand for an essential good
(residential water) with no perfect substitutes implies that households are likely to bear a sub-
stantial portion of the burden of price increases. This naturally raises the question: to what
extent were these price increases shared equitably across households? Several policy-relevant

results emerge from our analysis, which we discuss in turn.

6.1 Result #1: Low-income households are the most responsive to price changes

A first-order concern in unpacking distributional effects of price changes is understanding how
households across the income distribution differ in their demand response. Unfortunately, a
limitation of our data is that we do not have a direct measure of income for each household.
This concern is common in studies relying on utility billing microdata, as utilities historically
have not had the need to collect this information. To generate estimates of household income,
we implement an approach that combines property value data with Census data on average
household incomes in each block group. Our procedure ranks households within each block
group by their observed property value and then assigns each household an estimated income
based on the observed income distribution reported in the Census data for that block group@
We describe this procedure fully in Appendix

We use our household income estimates to calculate observed average monthly water expen-
ditures as a percentage of a household’s monthly income across income groups. The results,
presented in Figure show that the rates we observe, like most utility expenditures, are re-
gressive: lower-income households devote a larger share of their income to water expenditures
under the existing rates, both before and after the introduction of surcharge pricing. The overall
regressive nature of the rates observed here is not specific to the surcharge pricing scheme or

20Median income classes resulting from this procedures are $100 — 125 thousand dollars in Coastal and $75 — 100
thousand dollars in Inland. These results lend credence to our income estimation procedure, as they are consis-
tent with two stylized facts known about the study areaa. First, Coastal is relatively wealthier than Inland. Sec-
ond, Southern California in general is wealthier than the state of California as a whole (with a median income
of $64,500 in 2015 dollars). Source: https://www.census.gov/content/dam/Census/library/publications/2016/
acs/acsbr15-02.pdf, (accessed January 23, 2025).

“IThis approach still may not serve as a reasonable proxy for income if assessed property values diverge widely
from home sales prices, which are often considered a better proxy for income. We possess sales price data for Coastal
only. We re-implement our income estimation procedure using sales prices for Coastal as a robustness check, and find
a strong, positive correlation between our income proxy estimated using property values and the alternative proxy
generated from sales data (r = 0.82). As a result, we feel comfortable moving forward with the property-value based
income proxy, given that we do not have readily available home price data for Inland.
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BBRs as a whole. It is well understood that water rates in general are a regressive means of
raising revenues, as opposed to other mechanisms such as income or property taxes that more
directly target wealth (Wichman, 2024).

Given that low-income households devote a higher proportion of their income to water ex-
penditures, it is reasonable to suspect that they might be more responsive to price changes. We
investigate this by returning to our demand estimation framework and estimating heterogenous
price elasticities across the income distribution, reporting a distinct elasticity for each income
quartile. Results assuming average price responsiveness are presented in Table Across both
utilities, the lowest income quartile exhibits the most elastic demand response, with higher-
income households exhibiting less elastic demand responsesF_gI

The implications of these results for assessing the distributional impacts of price changes
are nuanced. While lower-income households may exhibit the most elastic demand response,
they may not actually pay the highest prices for water if they decrease demand to regularly stay
under their assigned budget. Put differently, these low-income households make the tradeoff be-
tween decreased consumer surplus from water conservation in exchange for avoiding increased
water expenditures. Whether this is ultimately desirable from an equity perspective depends
on whether these households are cutting back on water for high-value, essential purposes (e.g.,
drinking, bathing) or less essential uses (outdoor irrigation). High-income households exhibit
the least elastic demand response. This is potentially attractive from an equity perspective, as a
higher proportion of total revenues will be raised from these higher-income households. How-
ever, the structure of BBRs potentially shields many high-income households from facing the
surcharges, as larger budgets are assigned to households with larger lawns, effectively delaying
the point at which surcharges kick in@ Ultimately, surcharges must bind if they are to induce
disproportionate consumption reductions by the largest users.

6.2 Result #2: Surcharges do little to improve the overall regressivity of existing rates

As is clear from the prior discussion, adding drought surcharges on top of BBRs add an addi-

tional layer of complexity to understanding the distributional impacts of price changes in our set-

22We present analogous results assuming marginal price responsiveness in Table For robustness, in Table
we additionally estimate the same demand regressions for Coastal only using our alternate income proxy defined
from sales prices. Results are nearly identical to those presented for Coastal in Tables [5| and lending further
credibility to our income proxy measures defined using property values.

2These results are consistent with some others found in the extant literature. [Yoo et al.|(2014) find that lower-income
and lower-consumption households are more responsive to prices. Wichman et al.| (2016) also find that low-income
households are more sensitive to price increases, but they find that large users are more responsive to nonprice
conservation policies. [El-Khattabi et al.| (2021), however, find that large users are more responsive to price, and price
elasticities do not vary across the income distribution. So, the evidence is ultimately mixed.

24We investigate this point descriptively by assessing how water expenditures are distributed across the largest
users that surcharges are intended to target. In Table[A.T0} we calculate shares of total expenditures and consumption
that are borne by those who go above their water budgets on average, and those in the top quartile of the budget and
irrigable area distributions, all defined using the predrought surcharge pricing period. We find that the share of total
revenues and consumption by these large user groups remains largely unchanged between the predrought surcharge
pricing period and under surcharge pricing.
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Table 5: Heterogenous Elasticities by
Income Quartiles, Average Price

Coastal Inland
] (2

AP AP
A log(AP) -0.71%F% 1,227
(0.08) (0.09)
Alog(AP) x 12 0.04 0.07
(0.08) (0.10)
Alog(AP) x I3 0.24*** 0.17*
(0.08) (0.10)
Alog(AP) x 14 0.35*** 0.24**
(0.07) (0.10)
Observations 477,110 203,187
Households 26,988 10,840
Household FE Y Y
Month-of-Sample FE Y Y
First-stage F-stat 367 827

Notes: The table presents estimates of 8 from
estimating a variant of Equation The de-
pendent variable is the difference between
logged contemporaneous and logged baseline
consumption, Alog(gi;) = log(qit) — log(it)-
Logged endogenous prices are instrumented
for in the first stage using Alog(p;;), which
is interacted with dummy variables for quar-
tiles of predrought income classes. The time
period included is from July 2015 to Decem-
ber 2016. All specifications include a vector
of weather covariates, including evapotranspi-
ration, precipitation, temperature, and their
squares. Standard errors are clustered at the
household level and are presented below coef-
ficient estimates in parentheses. ***: p < 0.01;
*:p <0.05 * p<0.1.

ting. Although surcharges are designed with cost-recovery and conservation as the primary goals
(as opposed to equity), they could reduce the potential regressivity of BBRs if high-income, high-
use households face binding price increases. However, it is difficult to draw any definitive con-
clusions about changes in relative regressivity resulting from the imposition of surcharges from
the prior analyses because of the nonprice conservation that occurs between the pre-surcharge
pricing period and the surcharge pricing period.

To assess whether surcharges can improve the redistributive properties of BBRs, we again
leverage our counterfactual predictions during the surcharge pricing period from the demand
analysis, §;;. We calculate bills using §;; under the BBRs with surcharges and also using prices
from before the introduction of surcharge pricing. Using §;; to calculate counterfactual bills is
useful because the predictions represent a baseline level of consumption for each household that
is unaffected by the full suite of drought policies in place during the surcharge pricing period.
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This allows us to isolate changes in expenditures that result from the introduction of surcharges.

We illustrate the distribution of predicted expenditures before and during surcharge pricing
by constructing Lorenz curves and Gini coefficients similar to Levinson and Silva| (2022). Under
the standard approach to constructing Lorenz curves, one plots the share of income held by each
percentile of households, ordered by income. Lorenz curves further away from the 45-degree
diagonal indicate higher levels of income equality (i.e. the poorest 50% of households may only
hold 20% of aggregate income). Gini coefficients on a scale of 0 to 1 can then be calculated to
indicate the relative level of income inequality. We first plot the share of predicted water bills
paid by each percentile of households ordered by income, both before and during surcharge pric-
ing. Plotting expenditures instead of income implies that a lower-hanging Lorenz curve signals
more inequality in water expenditures across the income distribution. We additionally construct
standard income-based Lorenz curves and Gini coefficients for comparison. By comparing the
two sets of curves, we can assess the relative progressivity of the rate structures we observe. If
the share of water expenditures is more equal than the share of income across the income distri-
bution (i.e., the water-expenditure Lorenz curve is closer to the 45-degree line than the income
Lorenz curve), then water bills are regressive, as lower-income households pay a higher share of
water expenditure relative to their share of income.

Figure {4 illustrates our water expenditure Lorenz curves under drought surcharges for each
utility. The Lorenz curves under surcharge pricing fall slightly below the diagonal in each utility,
signaling that lower-income households do bear a proportionally lower share of total water ex-
penditures. The Gini coefficients associated with these Lorenz curves are 0.11 and 0.07 for Coastal
and Inland, respectively. Figured]also displays the expenditure Lorenz curves that are calculated
under predrought surcharge pricing, or standard BBRs. The Gini coefficients associated with
these Lorenz curves are 0.08 and 0.07 for Coastal and Inland, respectively. In both utilities, the
expenditure Lorenz curves lie nearly on top of each other, with surcharges inducing some limited
increases in progressivity in CoastalE] We compare these results to the standard income Lorenz
curves, which are also plotted on Figure [ with the blue solid line. The income Lorenz curves fall
further below the diagonal than the expenditure Lorenz curves, with associated Gini coefficients
of 0.32 for each utility@

Two key takeaways emerge. First, the overall regressivity documented in Figure is further
confirmed by the Lorenz curves in Figure[d} This regressivity is implied by the fact that the share
of total water expenditures faced by lower-income households is higher than the share of total
wealth held at each point along the income distribution. For example, in Coastal, the bottom
50% of households in terms of income hold only 25% of aggregate income, but cover 42% of total

water expenditures. In Inland, the poorest 50% of households also hold only 26% of aggregate

ZNote that these Gini coefficients are not directly comparable to the “electric" Ginis reported in Levinson and Silva
(2022), as we calculate Ginis based on the income distribution rather than the consumption distribution. This allows
us to focus on how surcharges potentially redistribute income between relatively wealthier and poorer households.

26Estimated Gini coefficients for the entire United States are on the order of 0.4-0.42. This indicates that es-
timated incomes in our two utilities are slightly more equal than in the country as a whole. Source: https:
//fred.stlouisfed.org/series/SIPOVGINIUSA (accessed January 23, 2025).
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Coastal Inland

Pred. Bills
= '='= Pred. Pre-DS Bills
Household Income

Share of Income/Expenditures

Share of Households (ordered by income)

Figure 4: Distribution of Water Expenditures and Household Income

Notes: The figure presents Lorenz curves indicating the share of predicted water expenditures under surcharge pricing (dashed
light blue line), the share of predicted water expenditures under pre-surcharge pricing (dashed navy line), and share of household
income (solid blue line) that accrue to each percentile of the household distribution ordered by income. The time period included is
the drought surcharge period (July 2015-December 2016). The 45° diagonal is plotted in the dotted black line and represents perfect
equality (i.e., the bottom x% of households pay x% of water expenditures).
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income but pay 45% of total water expenditures. For water rates to be progressive, expenditure
shares must be lower than income shares. Overall, the rates observed here do not lead households
to pay for water in proportion to their income. Although water utilities generally want to have
progressive rate structures, their ultimate equity objectives are often not made explicit. Without
knowing a utility’s underlying objective function, it is difficult to say whether BBRs are achieving
their equity objectives.

Second, the drought surcharges themselves do not appear to increase progressivity relative
to the prices charged before the introduction of surcharges, as evidenced by the similarity of
the Gini coefficients and expenditure Lorenz curves under both sets of prices. Although sur-
charges are not designed with equity as the primary goal, significant income shifts could occur if
wealthier, higher-use households face binding price increases. We observe little to no change in
progressivity due to surcharges, despite using predicted consumption that captures pre-drought
baseline consumption and does not allow for households to engage in price or nonprice con-
servation in response to changing conditions. This result implies that, even under optimistic
assumptions, surcharges should not be expected to be much more progressive than prevailing

water rates, as they do not appear to bind for enough, or the right type of, householdsE]

6.3 Result #3: Simpler rate structures possess desirable equity properties

The analysis so far is shows that BBRs in our setting are regressive and that drought surcharges
do not materially affect equity. Next, we seek to understand how the distributional properties
of the observed rates perform relative to feasible alternative rate structures. To facilitate this
analysis, we construct counterfactual rate structures for comparison with the bills households
face under the existing BBRs, focusing on the surcharge pricing period. We again leverage §;;,
our measure of predicted consumption, to calculate bills under the various alternatives. Using the
predictions to calculate counterfactual bills allows us to focus on changes in bills due to variation
in the alternative rate structures themselves, and not due to other nonprice conservation.

We construct counterfactual bills under three alternative rate structures: a uniform rate, a
uniform rate coupled with a variable fixed fee tied to household income (Burger et al., [2020;
Borenstein et al.,|2021), and an IBR designed to mimic the tiers of the existing BBRs. To facilitate
comparisons, we calculate prices charged under each counterfactual rate structure under an as-
sumption of revenue neutrality, where the aggregate variable commodity charge revenues raised
remains constant given observed consumption. Appendix [D|contains a full description of these
counterfactual prices and how they are calculated. We then directly incorporate price respon-
siveness by allowing households to adjust their consumption in response to the new prices that
they face under each counterfactual rate, with ultimate consumption adjustments determined by

the average price elasticities reported in Table 2l For example, a Coastal household who faces

27 Another explanation is that the correlation between income and water consumption is too weak for any rate
structure to be meaningfully progressive. The correlation coefficient between consumption and household income is
0.31 in Coastal and 0.25 in Inland.
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Uniform Rate Uniform Rate + Progressive Fixed Fee Increasing Block Rate
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Figure 5: Counterfactual Rate Structures

Notes: The figure conceptually illustrates the three counterfactual rate structures considered: a uniform rate, the same uniform rate
combined with a “progressive” fixed fee tied to income, and an increasing block rate. In each panel, marginal prices are graphed on
the left vertical axis, and fixed fees are graphed on the right vertical axis. The horizontal axis is consumption in CCF for the uniform
rate and increasing block rate, and household income for the uniform rate + progressive fixed fee.

higher average prices under an IBR than a BBR will lower their consumption in response based
on the estimated elasticity.

Figure [5| illustrates how each of the three alternative rate structures works in theory. Under
uniform rates, households pay both a flat fixed fee and marginal price that are constant across
all units of consumption. In the second panel, we graph rates against income to illustrate how
pairing the uniform rate with a progressive fixed charge operates. As before, the marginal price
is constant and therefore does not vary with income. The progressive fixed fee, however, does
rise with income. We illustrate this rise in Figure [5| as a series of discrete tiers, but in theory,
utilities could design such a fee in a number of ways, including as a continuous measure. We
return to depicting consumption on the horizontal axis in the third panel showing a hypothetical
IBR. As before, the fixed fee does not vary with consumption, but the marginal price increases
in discrete tiers as users move into higher consumption tiers. Recall that these tiers are the same
for all households and are not defined individually as under BBRs.

We proceed to compute our counterfactual bills as the sum of variable commodity charges for
water and fixed service changes, while abstracting away from other fees, such as sewer charges.
Table presents average bills for each rate structure, broken out by quartiles of the estimated
income distribution. Average bills are higher in Inland due to higher consumption overall. Bills
monotonically increase along with income under all rate structures for both utilities, indicating
that consumption is correlated to a degree with income. Average bills tend to be higher for IBRs
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Figure 6: Revenue Changes by Income Quartile

Notes: The figure presents percentage changes in the proportion of revenues raised from each quartile of the income distribution
when moving from BBRs to each of three counterfactual rate structures, respectively. Negative values indicate that proportionally
less revenue is raised from that quartile of homes under the alternative structure compared to a BBR, and positive values indicate
that proportionally more revenue is raised from that quartile relative to BBRs. Results incorporate household price response by
allowing for a one-time consumption adjustment in response to new prices using average price elasticities sourced from Table 2}

in the highest income quartiles. When considering the range of average bills, the progressive
fixed fee and the IBR tend to provide the largest spread between the lowest and highest income
quartiles in both utilities. For the progressive fixed fee, this result indicates that such a charge
is successful in its goal of increasing the progressivity of water expenditures. For IBRs, this
result indicates that wealthier, high-consuming users face higher marginal prices on more units
of consumption than they did under BBRs.

Focusing on average bills alone can mask important heterogeneity in how each rate structure
redistributes revenue. In Figure [f we calculate the percentage change in the proportion of
revenue raised from each quartile of the income distribution as a result of switching from BBRs
to each of the three alternatives. Results show that in Coastal, a uniform rate would shift the
burden toward less wealthy households, but in Inland, the uniform rate performs quite similarly
to the existing BBRs. Redistributing income through the fixed fee appears to be quite effective,

as evidenced by the fact that substantially less revenue is raised from the bottom two income
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quartiles. In Coastal, the IBR structure shifts some of the burden onto households in the highest
income quartile. However, this same result does not hold in Inland. This divergence could
partially be driven by the fact that larger, wealthier homes with larger outdoor water budgets
face higher prices sooner under the IBR than they did under BBRs, and adjust consumption
downwards accordingly. Additionally, recall from Table [2| that demand is relatively more elastic
for Inland households relative to Coastal, which allows for greater flexibility in response to

increased prices

6.4 Discussion

Our distributional analysis raises several points about the equity properties of combining sur-
charges with BBRs. First, BBRs appear more progressive than uniform rates only in certain
settings. If a utility does not wish to prioritize equity through the rate structure directly, then
it might be preferable to employ uniform rates, which avoid complexities with nonlinear rates
that are difficult to communicate to households (Kahn and Wolak) 2013} | Brent and Ward), 2019
Shaffer, [2020). Such rates also require much less information to be collected by the utility about
household size, lot size, and other factors that go into calculating water budgets. However, BBRs
do have one distinct equity advantage over uniform rates in that lower-consumption tiers can
be subsidized using local tax revenues and other fees. Both utilities we study here subsidize
consumption in the first two (under-budget) tiers by using revenues from property taxes to lower
marginal prices below the cost of supplying water in those tiers. Using property tax revenues
driven by wealthier homes to lower water costs for the entire service area improves the progres-
sivity of BBRs relative to uniform rates. That said, subsidizing volumetric rates for water use is
known to generate allocative inefficiencies by setting incorrect incentives for consumption, par-
ticularly when lump-sum transfers can be used to redistribute costs (Levinson and Silva [2022;
Wichman|, [2024).

If a utility does seek to incorporate equity concerns into the rate structure, redistributing
income through the fixed service charge can result in a relatively more progressive distribution
of bills with far lower information costs for the utility. By combining a single marginal price that
reflects the cost of supply with an income-varying service charge, such rates embed attractive
efficiency and equity properties (Burger et al., [2020; Levinson and Silva) [2022; Wichman, [2024).
However, political constraints may make individualized service charges directly tied to income
difficult to implement in practice, as evidenced by California’s current efforts to implement such
charges for electricity@ If such rates are politically infeasible, IBRs present another option.

2We present results from two additional scenarios in Appendix @ In Figure we report revenue changes un-
der a no price response scenario, where households are not allowed to adjust consumption in response to the new
counterfactual prices. Such a scenario enforces revenue neutrality across all counterfactual scenarios at the expense of
abstracting away insights gained from consumer price responsiveness. One change is that IBRs hit the highest income
quartiles harder, as these high-use households are unable to adjust consumption downwards in response to facing
higher prices sooner than they do under BBRs. Figure incorporates a heterogenous price response by using the
income-varying average price elasticities from Table E} The results here are largely similar to those in Figure @

PThe California Public Utilites Commission is moving forward with efforts to implement an
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Our results suggest IBRs can achieve progressivity gains relative to BBRs, and utilities could
potentially also subsidize consumption in the lower tiers with property taxes in the same way
that they currently do with BBRSEI

Equity considerations are also different during drought than during times of abundance.
When entering into an extended drought period, utilities must assess not only how to induce
permanent conservation, but also how to temporarily curb excessive or wasteful uses of water
while maintaining base levels of indoor water use. By assigning each household an individ-
ualized water budget, BBRs have the ability (unlike the other rate structures considered here)
to transmit individualized information to each household about what consumption the utility
would ultimately consider “wasteful.” Such an approach may be a more effective option to curb
excess water demand than other approaches such as mandatory water rationing

Considering the sum of the evidence, combining drought surcharges with nonlinear BBRs
possesses both positive and negative equity properties. Our analysis has noted several issues
with BBRs, most notably that by tying prices to a budget, higher prices are less likely to bind
for large users with higher budgets, counteracting the conservation signal that utilities intend to
communicate. Because household income is positively correlated with the inputs to the budget
formula, BBRs embed an implicit transfer from low-income to high-income households. At the
same time, the use of local property taxes to subsidize lower consumption tiers works to reverse
this effect by embedding transfers from high-income to low-income households, with the net
effect of these competing transfers ambiguous. Ultimately, whether the water budgets themselves
effectively transmit information about scarcity and serve as a nonprice conservation tool is a key
question that we are unable to address directly, as we lack sufficient pre-BBR dataF_ZI Knowledge
of the efficacy of the budgets themselves (along with knowledge of the utility’s ultimate objective
function when setting rates) is needed to definitively claim that BBRs are useful tools to achieve
conservation and equity goals simultaneously.

income-based fixed fee for electricity consumption, first proposed by [Borenstein et al| (2021)

and subsequently mandated by law in 2022. These efforts have generated significant politi-
cal backlash and face potential repeal efforts. Sources: https://www.utilitydive.com/news/
california-lawmakers-backpedal-on-income-based-utility-charges-as-ious-oth/707859/. & https://

energyathaas.wordpress.com/2024/05/13/reality-checking-californias-income-graduated-fixed-charge/
(accessed January 23, 2025).

30Proposition 218 presents another constraint on the ability of municipal utilities in California to incorporate equity
concerns into the ratemaking process. The restrictions placed on water utilities by Proposition 218 may make it
exceedingly difficult to experiment with alternative rate structures. Considering this constraint, in Appendix [D} we
discuss a final set of counterfactual results (presented in Figure and Figure in which we assume that the
utilities are restricted to keeping their BBRs intact and can only implement changes to the budget formula itself.

310ne of the utilities in this study enforced mandatory rationing days during an earlier California drought in 2008-
2009. Internal data showed no significant overall conservation due to a rebound effect where water use increased on
non-rationing days, and the utility faced widespread customer backlash.

32Cpastal used an IBR structure before switching to BBRs, and Inland previously used a uniform rate. |[Pérez-
Urdiales and Baerenklau (2019) provide early evidence that budgets can serve as an effective information signal to
high users when switching from uniform rates.
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7 Conclusion

In this paper, we study the introduction of drought surcharges layered within nonlinear BBRs as
a tool for urban water demand management. Our demand estimation indicates that consumers
do conserve water in response to surcharge—driven price increases despite their temporary na-
ture. However, further investigation reveals that surcharges alone cannot explain the majority of
the conservation we observe. Although utilities often seek to combine price and nonprice con-
servation approaches, for drought surcharges to sufficiently signal scarcity, they must bind for
a significant portion of households. BBRs undercut the effectiveness of surcharges by shielding
high users with large lawns from facing higher prices. Our comparison of hypothetical rate struc-
tures suggests that BBRs do not clearly dominate other rate structures along equity dimensions,
although we cannot definitively conclude that BBRs are equity dominated.

Climate change will continue to exacerbate water scarcity moving forward, making the need
to effectively conserve water during droughts increasingly important. Our results stress the need
for policymakers to consider the role that nonprice policies play in inducing conservation, as
surcharges alone are not enough to explain the demand response observed in the data. Whether
the budgets themselves effectively serve as a nonprice conservation tool is another understudied
question that future research should address. When turning to price-based policies, it is vital
that they send an appropriate price signal that accurately reflects the scarcity value of water.
Assigning high marginal prices, but then allocating large quantities of cheap water to households
with large lawns through water budgets muddies this price signal and undercuts the effectiveness
of surcharge pricing. Ultimately, utilities concerned with balancing conservation and equity
concerns during drought should consider carefully how surcharges interact with existing policies,
such as water budgets, before adoption.
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A Additional Results

A.1 Additional Figures
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Figure A.1: Timeline of 2011-2017 California Drought

Notes: The figure presents a visual timeline of the important events surrounding the California drought of 2011-2017 and how they
relate to the billing data used in the analysis.
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Figure A.2: Predicted and Actual Consumption Over Time, Diagnostic Predictions

Notes: The figure presents the time series of average actual and predicted consumption in each month-of-sample for each utility
separately, with actual consumption represented by the blue solid line and predicted consumption represented by the navy dashed

line. Monthly averages are plotted for the diagnostic exercise in which we use 2012 data only to predict entirely out-of-sample in
2013.
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Figure A.3: Random Forest Parameter Tuning

Notes: The figure presents results from our parameter tuning exercise in which we re-estimate predictions and errors over a range
of discrete values. We repeat this exercise for three random forest tuning parameters, separately for each utility: tree depth, number
of candidate predictor variables made available to the random forest algorithm, and minimum leaf size. Light blue solid lines plot
OOB error rates, and dashed navy lines plot out-of-sample RMSE values over the range of parameter values considered. The values
we choose for use in our generation of our full set of predictions are represented by the black vertical lines in each panel.
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Figure A.4: Random Forest Variable Importance Plots

Notes: The figure presents standard random forest variable importance plots for each utility separately. The top 12 most influential
predictors are presented on a rescaled measure [0, 1], with 1 being the most influential and 0 being the least influential.
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Figure A.5: Predicted and Actual Consumption Over Time, Panel Fixed Effect Predictions

Notes: The figure presents the time series of average actual and predicted consumption in each month-of-sample for each utility
separately. The predictions here are generated using a panel fixed effects specification with weather covariates and household-by-
month-of-sample fixed effects. The training period data used to estimate the model up to December 2013 is unshaded. The period
in which the drought emergency had been declared but drought surcharges were not yet in effect is shaded in pink (January 2014 to
June 2015). The period in which drought surcharges were in effect is shaded in red (July 2015-February 2017). Actual consumption
falling below predicted consumption indicates water conservation in the aggregate.
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Figure A.6: Distribution of Usage Relative to Budget

Notes: The figure presents histograms that illustrate the distribution of usage relative to a household’s water budget for household-
months during the drought surcharge period. Dashed vertical lines show the relevant break points for the BBR tier thresholds.
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Figure A.7: Binscatter of Instrument against Nonprice Conservation Under Surcharge Pricing

Notes: The figure presents a binscatter of average values for the predicted logged price change instrument in each of 50 bins for the
estimated nonprice conservation proxy variable for both utilities under surcharge pricing.
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Figure A.8: Average Monthly Water Expenditures as Share of Income

Notes: The figure plots the percentage of monthly income that households allocate to water expenditures over discrete household
income groups, calculated by taking average monthly bills and dividing by monthly income. This procedure is repeated separately
for both Coastal and Inland, and separately during pre-surcharge pricing (2011-2013) and the drought surcharge pricing period (July
2015-December 2016).
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Figure A.9: Revenue Changes by Income Quartile, No Price Response

Notes: The figure presents percentage changes in the proportion of revenues raised from each quartile of the income distribution
when moving from BBRs to each of three counterfactual rate structures, respectively. Negative values indicate that proportionally
less revenue is raised from that quartile of homes under the alternative structure compared to a BBR, and positive values indicate
that proportionally more revenue is raised from that quartile relative to BBRs. Results differ from Figure[f]in that households are
not allowed to adjust consumption in response to the new counterfactual prices, ensuring revenue neutrality in the aggregate.
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Figure A.10: Revenue Changes by Income Quartile, Heterogenous Price Response

Notes: The figure presents percentage changes in the proportion of revenues raised from each quartile of the income distribution
when moving from BBRs to each of three counterfactual rate structures, respectively. Negative values indicate that proportionally
less revenue is raised from that quartile of homes under the alternative structure compared to a BBR, and positive values indicate
that proportionally more revenue is raised from that quartile relative to BBRs. Results differ from Figure [6|in that we allow for a
heterogenous demand response along the income distribution using average price elasticities sourced from Table
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Figure A.11: Distribution of “Adjusted” Household Sizes

Notes: The figure presents histograms of the actual household sizes reported in the billing microdata and the “adjusted” distribution
of household sizes after implementing our household size correction procedure with census data. The reported or actual household
size distribution is represented by the solid bars, and the adjusted household size values are represented with the transparent
outlined bars.
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Figure A.12: Concentration Curves for Counterfactual Expenditure Shares

Notes: The figure presents Lorenz-style concentration curves indicating the share of water expenditures that accrue to each percentile
of the household distribution ordered by consumption, separately for actual BBRs and the two counterfactual BBRs we develop. The
time period included is the drought surcharge pricing period (July 2015-December 2016). The 45° diagonal is plotted in the dotted

black line and represents perfect equality (i.e., the bottom x% of households pay x% of water expenditures).
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A.2 Additional Tables

Table A.1: Validation Checks for Diagnostic Predictions

Coastal Mean Inland Mean
Out-of-Bag Error 4.44 Out-of-Bag Error 10.79
Out-of-Sample RMSE, RF 6.61 Out-of-Sample RMSE, RF 15.05
Out-of-Sample RMSE, OLS  7.31 Out-of-Sample RMSE, OLS  17.61

Notes: The table presents errors for the diagnostic predictions using 2012-2013 data.
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Table A.2: Base Demand Regressions, Not Instru-
menting for Price

Coastal Inland

@ 2) 3 €y

AP MP AP MP
A log(AP) 0.71%** 1.27%**

(0.01) (0.02)
A log(MP) 0.16*** 0.26***
(0.00) (0.01)

Observations 477,110 477,110 203,187 203,187
Households 26,988 26,988 10,840 10,840
Household FE Y Y Y Y
Month-of-Sample FE Y Y Y Y

Notes: The table presents estimates of 8 from estimating Equation
[] without instrumenting for observed price changes. The dependent
variable is the difference between contemporaneous and baseline con-
sumption, Alog(g;). The time period included is from July 2015 to
December 2016. All specifications include a vector of weather covari-
ates, including evapotranspiration, precipitation, temperature, and
their squares. Standard errors are clustered at the household level
and are presented below coefficient estimates in parentheses. ***: p <
0.01; **: p < 0.05; *: p < 0.1.
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Table A.3: IV Demand Regressions, No Bootstrapping

Coastal Inland

1) 2 3) “4)

AP MP AP MP
A log(AP) -0.44%%* -1.07%*%*

(0.03) (0.06)
A log(MP) -0.22%** -0.48%**
(0.02) (0.02)

Observations 477,110 477,110 203,187 203,187
Households 26,988 26,988 10,840 10,840
Household FE Y Y Y Y
Month-of-Sample FE Y Y Y Y
First-stage F-stat 2,737 2,199 4,214 5,688

Notes: The table presents estimates of 3 from estimating Equation
The dependent variable is the difference between contemporaneous and
baseline consumption, Alog(g;;). Endogenous price differences are in-
strumented for in the first stage using Alog(p;t). The time period in-
cluded is from July 2015 to December 2016. Columns 1 and 3 instru-
ment for average price differences, and Columns 2 and 4 instrument
for marginal price differences. All specifications include a vector of
weather covariates including evapotranspiration, precipitation, temper-
ature, and their squares. Standard errors are clustered at the household
level and are presented below coefficient estimates in parentheses. ***:
p <0.01; **: p <0.05; *: p < 0.1.
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Table A.4: IV Demand Regressions, Accounting for
Nonprice Conservation

Coastal Inland

1) 2) 3) 4

AP MP AP MP
A log(AP) -0.33%** -0.90***

(0.03) (0.05)
A log(MP) -0.16™** -0.40%**
(0.02) (0.02)

Observations 476,142 476,142 202,342 202,342
Households 26,974 26,974 10,837 10,837
Household FE Y Y Y Y
Month-of-Sample FE Y Y Y Y
First-stage F-stat 2,736 2,195 4,225 5,688

Notes: The table presents estimates of  from estimating Equation
The dependent variable is the difference between contemporaneous and
baseline consumption, Alog(g;;). Endogenous price differences are in-
strumented for in the first stage using Alog(p;¢). The time period in-
cluded is from July 2015 to December 2016. Columns 1 and 3 instru-
ment for average price differences, and Columns 2 and 4 instrument
for marginal price differences. All specifications include a vector of
weather covariates including evapotranspiration, precipitation, temper-
ature, and their squares. Standard errors are clustered at the household
level and are presented below coefficient estimates in parentheses. ***:
p < 0.01; **: p < 0.05* p<0.1.
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Table A.5: IV Demand Regressions, Alternative Fixed Effects

Coastal Inland

¢y (2) 3) “)

AP MP AP MP
A log(AP) -0.18*** -1.20%**

(0.03) (0.07)
A log(MP) -0.10*** -0.55***
(0.02) (0.03)

Observations 477,121 477,121 203,188 203,188
Households 26,999 26,999 10,841 10,841
Month-of-Sample x Zip FE Y Y Y Y
First-stage F-stat 4023.0 4020.5 6277.9 7426.5

Notes: The table presents estimates of B from estimating Equation The
dependent variable is the difference between contemporaneous and baseline
consumption, Alog(q;t). Endogenous price differences are instrumented for in
the first stage using Alog(p;t). The time period included is from July 2015 to
December 2016. Columns 1 and 3 instrument for average price differences, and
Columns 2 and 4 instrument for marginal price differences. All specifications
include a vector of weather covariates, including evapotranspiration, precip-
itation, temperature, and their squares. Standard errors are clustered at the
household level and are presented below coefficient estimates in parentheses.
***:p <0.01; **: p <0.05 * p<0.1.
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Table A.6: IV Demand Regressions, Prediction Errors

Coastal Inland

1) 2 3) “4)

AP MP AP MP
A log(AP) -0.21%%* -0.93***

(0.03) (0.06)
A log(MP) -0.10%** -0.42%**
(0.02) (0.03)

Observations 477,326 477,326 203,259 203,259
Households 26,995 26,995 10,840 10,840
Household FE Y Y Y Y
Month-of-Sample FE Y Y Y Y
First-stage F-stat 2,737 2,200 4,216 5,689

Notes: The table presents estimates of 3 from estimating a variant
of Equation B} The dependent variable is the prediction error, or the
difference between logged actual and logged baseline consumption,
log(PE) = log(qit) — log(4it). Endogenous price differences are instru-
mented for in the first stage using Alog(p;;). The time period included
is from July 2015 to December 2016. Columns 1 and 3 instrument for av-
erage price differences, while Columns 2 and 4 instrument for marginal
price differences. All specifications include a vector of weather co-
variates, including evapotranspiration, precipitation, temperature, and
their squares. Standard errors are clustered at the household level and
are presented below coefficient estimates in parentheses. ***: p < 0.01;
*:p <0.05 * p<0.1.

A.18



Table A.7: Heterogenous Demand Elasticities, Average Price

Coastal Inland
@ @ ®) )
Budget Consumption Budget Consumption
A log(AP) -0.77+** -1.63*** -2.61%* -1.92%**
(0.06) (0.20) (0.16) (0.14)
A log(AP) x Budget (100-150%)  0.51*** 1.63%**
(0.05) (0.13)
A log(AP) x Budget (>150%) 0.67*** 2.12%**
(0.09) (0.15)
A log(AP) x Q2 0.71%** 0.91***
(0.17) (0.12)
A log(AP) x Q3 1.30%** 1.13%**
(0.18) (0.13)
Observations 477,110 477,110 203,187 203,187
Households 26,988 26,988 10,840 10,840
Household FE Y Y Y Y
Month-of-Sample FE Y Y Y Y
First-stage F-stat 476 143 525 646

Notes: The table presents estimates of 3 from estimating a variant of Equation The dependent
variable is the difference between logged contemporaneous and logged baseline consumption,
Alog(git) = log(qit) — log(Git). Logged endogenous prices are instrumented for in the first stage
using Alog(p;t), which is interacted with dummy variables for terciles of predrought budget and
consumption classes. The time period included is from July 2015 to December 2016. All columns
instrument for average price differences. All specifications include a vector of weather covariates,
including evapotranspiration, precipitation, temperature, and their squares. Standard errors are
clustered at the household level and are presented below coefficient estimates in parentheses. ***:
p <0.01; **: p <0.05; *: p < 0.1.
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Table A.8: Heterogenous Elasticities
by Income Quartiles, Marginal Price

Coastal  Inland

@ 2
MP MP
A log(MP) -0.35***  -0.53***
(0.04) (0.04)
Alog(MP) x 12 0.03 0.03
(0.04) (0.04)
Alog(MP) x 13 0.12%** 0.06
(0.04) (0.04)
Alog(MP) x 14 0.16*** 0.09**
(0.04) (0.04)
Observations 477,110 203,187
Households 26,988 10,840
Household FE Y Y
Month-of-Sample FE Y Y
First-stage F-stat 270 1,084

Notes: The table presents estimates of 8 from
estimating a variant of Equation The de-
pendent variable is the difference between
logged contemporaneous and logged baseline
consumption, Alog(gi;) = log(qit) — log(it)-
Logged endogenous prices are instrumented
for in the first stage using Alog(p;;), which
is interacted with dummy variables for quar-
tiles of predrought income classes. The time
period included is from July 2015 to Decem-
ber 2016. All specifications include a vector
of weather covariates, including evapotranspi-
ration, precipitation, temperature, and their
squares. Standard errors are clustered at the
household level and are presented below coef-
ficient estimates in parentheses. ***: p < 0.01;
*:p <0.05 * p<0.1.
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Table A.9: Heterogenous Elasticities
by Income Quartiles, Alternate In-
come Classification for Coastal Only

1) )
AP MP
A log(AP) -0.65%**
(0.07)
Alog(AP) x 12 0.10
(0.07)
A log(AP) x I3 0.17**
(0.07)
Alog(AP) x 14 0.29***
(0.07)
A log(MP) -0.32%**
(0.03)
Alog(MP) x 12 0.06*
(0.04)
A log(MP) x 13 0.09**
(0.04)
Alog(MP) x 14 0.14***
(0.03)
Observations 477,110 477,110
Households 26,988 26,988
Household FE Y Y
Month-of-Sample FE Y Y
First-stage F-stat 462 353

Notes: The table presents estimates of 8 from
estimating a variant of Equation The de-
pendent variable is the difference between
logged contemporaneous and logged baseline
consumption, Alog(gi) = log(qir) — log(Fit)-
Logged endogenous prices are instrumented
for in the first stage using Alog(p;;), which is
interacted with dummy variables for quartiles
of predrought income classes. The time period
included is from July 2015 to December 2016.
Results are presented for Coastal only. All
specifications include a vector of weather co-
variates, including evapotranspiration, precip-
itation, temperature, and their squares. Stan-
dard errors are clustered at the household level
and are presented below coefficient estimates
in parentheses. ***: p < 0.01; **: p < 0.05; *: p <
0.1.
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Table A.10: Shares of Revenue and Consumption Borne by Large Users

Pre-Surcharge Pricing  Surcharge Pricing Difference

Coastal
Over-Budget Households
Share Total Revenue 0.38 0.38 -0.01
Share Total CCF 0.30 0.29 -0.02
Heavy-Use Households
Share Total Revenue 0.51 0.51 -0.00
Share Total CCF 0.45 0.44 -0.01
Large-Lawn Households
Share Total Revenue 0.39 0.40 0.01
Share Total CCF 0.39 0.39 0.00
Inland
Over-Budget Households
Share Total Revenue 0.50 0.47 -0.03
Share Total CCF 0.46 0.44 -0.02
Heavy-Use Households
Share Total Revenue 0.47 0.46 -0.01
Share Total CCF 0.46 0.44 -0.02
Large-Lawn Households
Share Total Revenue 0.35 0.36 0.01
Share Total CCF 0.37 0.37 0.01

Notes: The table presents the shares of total revenue and total consumption that are generated
by three separate user classes. Over-budget households are those that go over their budget on
average across all months in the predrought surcharge pricing training period of 2011-2013.
Heavy-use and large-lawn households are those in the top quartile of the distribution for these
variables during the same preperiod, respectively. The third column presents differences in
proportions between the two periods. We define total revenue as aggregate revenues raised
from variable commodity charges specifically, and abstract away from fixed charges.
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Table A.11: Summary Statistics for Counterfactual Rates

) 2) ®) 4)

Coastal Mean Mean Mean Mean
Budget-Based Rate 28.55 31.93 36.78 49.74
Uniform Rate 29.62 32.77 36.92 45.92
Progressive Fixed Fee 21.62 30.55 41.35 54.19
IBR, Mean Budget 27.57 31.25 36.91 51.71
Unique Accounts 6,774 8,387 6,507 5,338

Total Billing Observations 120,725 149,206 115,436 95,027

) 2 ®) 4)

Inland Mean Mean Mean Mean
Budget-Based Rate 9484 9874 108.28 131.05
Uniform Rate 94.69 98.71 108.41 131.49
Progressive Fixed Fee 7342 9218 115.06 155.72
IBR, Mean Budget 94.36 99.48 109.51 131.44
Unique Accounts 2,949 2,661 2,662 2,569

Total Billing Observations 55,390 50,033 50,025 48,376

Notes: The table presents summary statistics for the counterfactual bill analysis.
Consumption is defined as predicted consumption in the drought surcharge pe-
riod using the predictions from our random forests. Mean bills in USD ($) under
each rate structure are broken out by quartiles of the income distribution. Bills
are defined as the variable commodity charge plus the fixed fee, and abstract
away from other charges, such as sewer fees and other delivery charges.
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B Data Construction and Cleaning Appendix

B.1 Raw Data Cleaning

We first import the raw data files and keep only observations in the Single-Family Residential
category and in the periods during which BBRs were in place for the two utilities (July 2011-
August 2017 for Coastal and October 2011-December 2017 for Inland). The raw billing records for
Coastal contain 3,836,406 observations. The Inland billing records contain 2,097,552 observations.
For Coastal, condos are sometimes listed as single family and sometimes as multi-family. We
chose to keep both initially but then filter out buildings that are clearly master-metered apartment
buildings and not condos through the use of a more descriptive property use code identifier.
We then filter further by dropping accounts that use recycled water instead of standard drinking
water. After these initial screens, we are left with 2,121,852 observations for Coastal and 1,025,381
observations for Inland.

We then merge each of three supplemental datasets as described in Section 3l We first merge
in the US Census 2015 ACS five-year estimates for household size, household race, and household
income distributions at the census block group level (US Census Bureau, 2015). The raw billing
records were geocoded to include latitude and longitude coordinates and block and block group
numbers, which facilitates the merge to census data. We also merge some limited demographic
information received from CaDC by using customer and billing record ID numbers.

Next, we merge the county assessor data from the two southern California counties in which
our utilities are located. For Coastal, the assessor parcel number matches well with that in
the assessor data (over 99% match rate). We then drop addresses that match to more than one
assessor parcel number and keep the one most likely to be the actual household (as determined by
similarities in address strings). We calculate the Levenshtein difference between strings for these
parcels and keep those with low scores and those in which street numbers of the houses match
between the raw data and assessor. For Inland, the assessor parcel number did not match well
with the assessor data, in part due to some data issues with extra digits at the end of numbers.
String cleaning and manipulation was never able to generate higher than a 70% match rate. Even
for those records that did match, in many cases hand-inspecting addresses revealed differences
between the raw data and the assessor data. Therefore, for Inland, we created a full address
string variable by which to merge the assessor data to the billing data. This resulted in an 80%
match rate. We then drop a limited number of households with more than one parcel number
for a given address. At this stage in the data cleaning, we are left with 2,017,749 observations for
Coastal and 886,529 observations for Inland.

Furthermore, we merge in our weather variables in addition to evapotranspiration as de-
scribed in the paper and from Schlenker and Roberts (2009). The data consist of daily weather
measures for 2.5-by-2.5 mile grids across the contiguous 48 states. We keep records for relevant
grids in southern California over the study period of our analysis (2011-2017). We then match
customers in the billing data to their nearest grid in the daily weather data using the geonear
Stata package (Picard) 2012). We then take each billing record and calculate the average daily
maximum and minimum temperature and average and total precipitation based on the daily
weather data for the corresponding weather grid and dates for the billing record. A small num-
ber of parcels in both data sets had missing coordinates and are dropped in this stage.

We apply four final filtering criteria to our data. We first drop a small number of remaining
observations that are less than 15 days or more than 45 days, as these observations are not
representative of a normal billing period that approximates a calendar month’s worth of time.
We then drop very large outliers in consumption and budgets. These potentially indicate months

B.1



where the customers had a variance to fill a swimming pool, or potentially had a leak or other
water emergency on their property. For both variables, we drop observations greater than the
99.75th percentile. Third, we apply the filtering criteria that households must have a relatively full
panel (> 70 months) worth of billing records in order to guarantee that enough data is available
to generate consumption predictions. Finally, we also drop a small number of households that
have no variability in water consumption across all months, as these are potentially households
with no water consumption. After applying these filters, we are left with the final data used in the
empirical analysis: 1,989,521 observations for Coastal (representing 27,006 unique households)
and 789,741 observations for Inland (representing 10,841 unique households).

B.2 Evapotranspiration and Outdoor Budget Construction in Inland

Beginning in 2016, many Inland records have missing information on indoor and outdoor wa-
ter budgets. We can exactly recreate indoor budgets using the indoor budget formula, but we
must rely on an estimate of the outdoor water budget. This is because we only observe ag-
gregate evapotranspiration over the entire billing period, but Inland calculates outdoor budgets
on a daily level and then aggregates them to get a total outdoor budget for the billing period.
However, Inland’s plant factors correspond to calendar months, and most billing periods include
days from two separate months. Therefore, from the raw data alone, we cannot exactly recre-
ate outdoor water budgets because we are unsure of how much evapotranspiration occurred in
each calendar month of a billing period. To improve upon using the overall evapotranspiration
measure, we use publicly available data from the California Irrigation Management Informa-
tion System (CIMIS, 2018) to calculate an estimate of the percentage of evapotranspiration that
occurred in each month of the billing period. We then apply those percentages to the total evap-
otranspiration observed for the billing record, and generate two new variables for each billing
record that represent the portion of the overall evapotranspiration that occurred in each calendar
month of the billing record. Then, we are able to apply the correct daily plant factors to these
adjusted evapotranspiration variables, and more accurately recreate outdoor water budgets.

B.3 Price and Bill Calculations

We gather historical information about residential water rates and budget tiers from both utilities’
financial records and other publicly available documents in order to merge price information with
our billing records. We formally code the rate structure for each budget period using the Open
Water Rate System (OWRS) developed by the California Data Collaborative. We calculate final
bill amounts using the R package RateParser developed by Tull (2016). This package allows
users to bring in data on monthly water budgets and consumption and apply the rate structures
coded in OWRS format to easily calculate total monthly bills. Although the Coastal billing
records did not include the final bill amount, we repeat this process for Inland despite having
final bill amounts to help us ensure the accuracy of our calculations. This also indirectly helped
us to confirm that our estimates of outdoor budgets discussed previously were accurate as our
calculated bills were very close to the provided bill amounts. Our analysis here accounts for the
fact that Coastal rounds budgets to the nearest integer, but Inland does not.
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C Empirical Framework Appendix

C.1 Prediction Generation

The first step in our empirical analysis is to develop predictions that reflect what counterfac-
tual consumption would have been in the absence of price and nonprice conservation policies
(described in Section ). We use random forests, a machine learning algorithm commonly used
in predictive exercises, to generate these predictions. We use the rforest Stata package from
Schonlau and Zou| (2020) to implement our predictive exercise.

Our predictions use data from 2011-2013 to predict consumption in 2014-2017. An underly-
ing assumption that we make is that random forests have the ability to predict reliably well in
entirely out-of-sample years. Although we expect our predictions to not match the observed con-
sumption in 2014-2017 (due to the presence of drought policies), we do want the predictions in
2014-2017 to reliably capture the baseline consumption from 2011-2013. We test this assumption
by performing a diagnostic exercise to check the ability of random forests to predict entirely out-
of-sample. The core of the exercise is to limit the data to just two years, 2012-2013, and use 2012
data to predict 2013 consumption entirely out-of-sample. Since the full suite of drought policies
had not been enacted, 2012 data should be able to predict out-of-sample in 2013 well. The results
from this exercise are presented in Figure On average, the out-of-sample predictions in 2013
are close to the levels of actual consumption in 2013, and no consistent gap emerges between the
two.

We additionally use the 2012-2013 prediction diagnostic exercises to perform other standard
random forest model checks. In Table we present out-of-bag (OOB) error rates and out-
of-sample root mean square error (RMSE) values for our diagnostic predictions compared to
an alternative in which we use simple OLS models to generate predictions. OOB error rates
are calculated by constructing random forest predictions for each observation in the training set
using only the trees in which that observation was not included in the bootstrap sample used
to develop that tree. OOB error rates are conceptually similar to errors calculated using k-fold
cross validation in other machine learning applications, such as the least absolute shrinkage and
selection operator (LASSO). As expected, out-of-sample RMSE values are higher than the OOB
errors for our random forest predictions. However, Table does illustrate that the random
forest does buy us additional predictive accuracy over using simple OLS for predictions, as
evidenced by the lower out-of-sample RMSE for random forests in each utility compared to OLS.

We conclude our diagnostic exercise by using the 2012-2013 data to tune a number of impor-
tant parameters for our random forests. For each utility separately, we allow tree depth, number
of predictor variables made available to the random forest, and minimum leaf size to vary over
a range of reasonable values, estimate predictions, OOB errors, and out-of-sample RMSE values
and select appropriate values to use for these parameters when estimating the primary predic-
tions using the full data. We seek to minimize these errors while at the same time respecting
computational constraints. For example, there is a clear tradeoff between allowing trees to grow
deeper for more predictive accuracy, and the amount of computational time it would take to
estimate those deeper trees. Figure graphs OOB errors and out-of-sample RMSE values over
the range of values considered for each of the three tuning parameters separately (and also sep-
arately by utility). The value we choose for each is represented by the vertical black lines and
represents our judgment of the value beyond which the benefits of improvements in predictive
accuracy are outweighed by the cost of additional computing time. We choose final values for the
tuning parameters as follows: for Coastal, 16 for tree depth, 15 for number of predictor variables,
and 3 for minimum leaf size; for Inland, 18 for tree depth, 24 for number of predictor variables,
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and 3 for minimum leaf size.

Given these chosen values, we proceed to generate our out-of-sample predictions using the
full study period, with 2011-2013 as the training period and 2014-2017 as the out-of-sample test
period. We examine which variables contribute the most influence to shaping the predictions
by inspecting standard variable importance plots that calculate each variable’s contribution to
predictive accuracy and present a variable-importance metric on the scale of 0 to 1 (with 1 being
most influential). The results of this exercise are presented in Figure where the top 12 most
influential predictors are presented for each utility separately. Outdoor and total water budgets
are influential in both utilities, as they send a normative signals to household about how much
water consumption is “appropriate.” Other influential predictors include weather variables and
month and zip code dummies, especially in Inland.

Finally, we ensure that our results are not the result of some idiosyncratic feature unique to
random forests by generating an alternative set of out-of-sample counterfactual predictions for
2014-2017 using a simple panel fixed effects approach. We include a vector of weather covariates
and interactions and household-by-month-of-year fixed effects to generate these predictions. The
time series of average monthly values is presented in Figure These predictions also reliably
capture household consumption on average in the training period and replicate the observed gap
between predicted and actual consumption that we observe when using random forests.

C.2 Bootstrapping Procedure

Our initial approach of clustering standard errors at the household level does not account for the
fact that our random forest predictions are estimated with error. Without correcting for this, it is
likely that our clustered standard errors will be too small. To the best of our knowledge, there
is not fully clear guidance from the econometrics literature on how to handle this issue, and in
practice, it is common to bootstrap both the prediction and regression steps of the estimation
procedure to fully account for the variance associated with our predictions (for example, the pro-
cedure described in Burlig et al,(2020).) To construct standard errors for 3 that properly account
for errors associated with our predictions, we implement the following bootstrap procedure:

e Sample households with replacement up to the full number of households in each utility.
Sampling a household means that all of its data across years is included in the sample.

e Train the random forest using the 2011-2013 data from the bootstrap sample, and predict
4% out-of-sample in 2014-2017 for the bootstrap sample.

e Construct the predicted price change instrument Alog(p;)" in the same way using 4%.

e Estimate Equation 3| on the bootstrap sample (weighting by number of times household
was sampled) and save values of A°.

e Repeat the process B times. We set B = 500 to balance having enough bootstrap replications
to capture the important variability while respecting computational constraints.

e Calculate the mean and variance of the B estimates of f3, and report the bootstrapped
standard error as the square root of the estimated variance.
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D Distributional Appendix

D.1 Construction of Household Income Variable

We do not directly observe a measure of income for the households in our study. We create an
estimated measure of household income to use in constructing our water Lorenz curves presented
in Section [} To estimate income, we use the following method, incorporating both information
on property values from our assessor data and annual household incomes from the ACS Census
2015 5-year estimates at the block group level (US Census Bureau, 2015).

ACS provides estimates of the number of households in discrete income ranges at the block
group level. We combine these estimates with data on the total households in the block group
to create proportions of homes in each income category. For reference, the annual income
categories are as follows: less than $10,000; $10,000-$14,999; $15,000-$19,999; $20,000-$24,999;
$25,000-$29,999; $30,000-$34,999; $35,000-$39,999; $40,000-$44,999; $45,000-$49,999; $50,000—
$59,999; $60,000-$74,999; $75,000-$99,999; $100,000-$124,999; $125,000-$149,999; $150,000-$199,999;
and more than $200,000. To illustrate the calculation we make, consider a relatively wealthy block
group that is estimated to have 200 homes overall, of which 40 homes each belong to the top five
income brackets. Therefore, the proportion of homes in each income range is 0 for each of the
lower-income brackets, and 0.2 for each of the top five income brackets.

We proceed by ranking the households in each block group for both utilities by that house-
hold’s observed property value. We then take the proportions calculated previously and apply
them to our household rankings. Now, consider the same hypothetical block group from be-
fore. We apply the percentages calculated from the ACS data to the households in this block
group that are in our data. In this example, this would result in no households being assigned to
the lower income groups, and 20% of the households in our data being assigned to each of the
top five income groups. We conclude by assigning each household the midpoint of its discrete
income range. Functionally, this means that each household is assigned one of the following an-
nual income values: $5,000; $12,500; $17,500; $22,500; $27,500; $32,500; $37,500; $42,500; $47,500;
$55,000; $67,500; $87,500; $112,500; $137,500; $175,000; and $200,000.

Our procedure depends on two primary assumptions. The first assumption that the house-
holds in our data are representative of the block group as a whole, and that the income distribu-
tion illustrated by the ACS data accurately describes the income distribution of the households
in our data. The second assumption is that property values, which we do observe in our assessor
data, are correlated with income and can be used to compare households in our data, such that
a household with a higher property value also has a higher income. This is a strong assumption
but necesssary given data limitations. For Coastal, we do have home sales prices data available,
which may serve as a more reliable proxy. We repeat the procedure described above, with the
relevant change being that households are ranked within a block-group by their most recent sales
price (adjusted to 2015 dollars) before assignment to their corresponding income group.

D.2 Construction of Alternative Rate Structures

We construct counterfactual bills under three alternative rate structures: a uniform rate where
the marginal price paid for each unit of water is constant, the same uniform rate coupled with
a fixed service charge that varies with household income, and an IBR designed to mimic the
budget tiers observed in practice. We discuss the construction of each set of alternatives in turn.

The uniform rate is the simplest of the three alternative rate structures. We begin by aggre-
gating total volumetric revenue and total consumption in the drought surcharge pricing period.
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Recall that these aggregate measures are based on predicted consumption. We then divide total
predicted revenue by total predicted consumption to calculate the single uniform rate that satis-
fies our assumption of revenue neutrality. For Coastal, this uniform marginal price is $1.79/CCF.
For Inland, it is $2.55. These prices for both utilities fall between the Tier 2 and Tier 3 prices
under the existing BBRs.

Next, we combine the uniform rate derived in the previous structure with a “progressive”
fixed service charge, similar to the analysis in [Burger et al. (2020). To construct a fee that varies
with income, we start with our estimated household income measure defined for the Lorenz
curve analysis and aggregate income utility-wide. This allows us to determine each household’s
share of total utility-wide income. We then aggregate total revenues from the existing fixed
service charges. We conclude by multiplying each household’s share of total income by the
aggregate service charge revenue to determine each household’s “progressive” service charge.
The service charges we calculate range from $0.49 to $19.62 in Coastal, with a mean of $11.22.
For Inland, the service charges range from $1.45 to $58.06, with a mean of $29.90.

We conclude by constructing a revenue-neutral IBR structure. We construct the IBR tiers by
taking the average indoor and outdoor water budgets for each utility under drought surcharges
and use those as the block cutoff points between Tier 1 and 2 consumption, and Tier 2 and 3
consumption, respectively. We further mimic the BBRs we observe in practice by setting 125% of
the total budget as the cutoff between Tier 3 and 4 consumption, and 150% of the total budget as
the cutoff between Tier 4 and 5 consumption. The functional difference between this alternative
rate structure and the existing BBRs is that rates are defined utility-wide and no longer household
specific. We then distribute predicted consumption to each of the new IBR blocks.

We proceed to determine a schedule of prices consistent with our revenue-neutrality assump-
tion. Given the infinitely many combinations of prices that result in the same overall volumetric
revenue, we solve a system of linear equations that includes the total revenue equation (price
times quantity within each block) and a series of equations that maintain the ratio of prices in
higher blocks to the prices in Tier 1 of the actual BBR structure. This setup results in a unique
solution that preserves the nature of an IBR structure as well as the ratio of prices in the original
BBR structure. The price schedule we calculate for our alternative IBR is as follows for Coastal:
$1.01 for Tier 1 consumption, $1.15 for Tier 2 consumption, and $6.29 for consumption in Tiers
3-5. Recall that we are mimicking drought surcharge pricing, which is why the price for all
consumption above budget is constant. For Inland, the IBR price schedule is $1.96 for Tier 1 con-
sumption, $2.29 for Tier 2 consumption, $4.38 for Tier 3 consumption, and $5.37 for consumption
in Tiers 4 and 5. Note that we obtain four unique prices instead of three as with Coastal because
Inland restored the Tier 3 price one year into drought surcharges. The breakpoints between our
five consumption tiers are 10, 16, 20, and 24 CCF in Coastal and 10, 36, 45, and 54 CCF for Inland.

D.3 Counterfactual BBR Structures

Proposition 218 in California limits the extent to which local governments can assess new taxes
and fees. Ultilities considering changes to their rate structures must take care to not run afoul
of Proposition 218 restrictions. Given this, it might be infeasible to assume that our two utilities
could change to a different type of rate structure as we do in our counterfactual bill analysis in
Section [ A natural question arises from these restrictions: if other rate designs are infeasible
and utilities are set on using BBRs, how can changes to the water budget formula itself affect its
redistributive properties? We consider here two feasible changes to the water budget calculations.

First, we examine the assumptions that utilities make about household size for homes in their
service territories. As referenced earlier, both utilities make an initial assumption about single
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family household sizes (3 or 4 in Coastal and 3 in Inland) that households can later update. Given
that household size is a direct component of indoor budgets, this policy incentivizes households
with more than the assumed number of persons to update their household size with the utility
and receive a larger budget. We verify this trend in the data in Figure as households do
not update their household size to be smaller than the default. The solid bars represent the
distribution of household sizes reported in the data and show no households with one or two
people. This points to a potential issue, as it is unlikely that this distribution of household sizes
will closely match the actual distribution in each utility’s service territory.

We use Census data on household sizes in our study areas to create an adjusted measure
of household size. We sort households first by number of bedrooms then by irrigable square
footage within census block groups. We assume that households that have updated their size
with the utility are “correct” and only include households that are assigned the default size
in this correction. Then, in a similar process used in our estimation of household income, we
assign each ranked household an adjusted or “corrected” size according to the distribution of
sizes in each block group. For example, if ACS says that 10% of homes in a block group are
one-person homes, we will assign the bottom 10% of our households in our ranking a household
size of 1 instead of the default. Figure also plots this adjusted distribution in the transparent
bars, showing the gap between what the observed data and what the census data imply about
household sizes.

This is our first counterfactual BBR: we keep all other factors the same, but just calculate
budgets using this adjusted household size. Our second counterfactual BBR focuses on another
large driver of variation in water budgets: irrigable square footage of a household’s lawn. Our
analysis has shown that this portion of water budgets allows households with large lawns to
consume more water at lower marginal prices. To correct for this, we suspend the individualized
outdoor budget and instead calculate all household outdoor budgets based on the utility-wide
average irrigable square footage area. We combine these new outdoor budgets with our adjusted
indoor budgets from the previous counterfactual to define a household’s new budget. In both
of our counterfactual BBRs, we introduce a further simplification in that we collapse our budget
down to two tiers, with an under-budget and over-budget price.

Figure displays Lorenz-style concentration curves where we plot the share of bills paid
under actual BBRs and our two counterfactual BBRs over the distribution of households ordered
by consumption. When plotting expenditures, a lower-hanging curve is more redistributive. Our
results show that only correcting the household size actually makes BBRs slightly less redis-
tributive relative to the observed rates, indicating that the liberal household size assumptions
are relatively more beneficial to lower-consumption, smaller homes. Assigning all households a
single average outdoor budget significantly improves the redistributive nature of BBRs relative
to both alternatives, as many large households with large budgets have their outdoor budgets
reduced as a result of the policy change.
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